National Institute for Health and Care Excellence

Draft Guideline

Chronic obstructive pulmonary disease in over 16s: diagnosis and management

[I] Inhaled triple therapy

NICE guideline NG115 Evidence reviews February 2019

Draft for Consultation

This evidence review was developed by the NICE Guideline Updates Team

Disclaimer

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian.

Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties.

NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the <u>Welsh Government</u>, <u>Scottish Government</u>, and <u>Northern Ireland Executive</u>. All NICE guidance is subject to regular review and may be updated or withdrawn.

Copyright

© National Institute for Health and Care Excellence, 2019. All rights reserved.

ISBN:

Contents

Inhaled triple therapy	6
Review question	6
Introduction	6
PICO table	6
Methods and process	7
Clinical evidence	
Summary of clinical studies included in the evidence review	9
Quality assessment of clinical studies included in the evidence review	14
Economic evidence	14
Summary of studies included in the economic evidence review	15
Economic model	17
Evidence statements	
Recommendations	
Rationale and impact	
The committee's discussion of the evidence	
Appendices	35
Appendix A – Review protocols	35
Review protocol for inhaled triple therapy	35
Appendix B – Methods	40
Evidence synthesis and meta-analyses of pair-wise data	40
Evidence of effectiveness of interventions	40
Health economics	44
Appendix C – Literature search strategies	
Clinical literature search	
Health economic literature search	
Appendix D – Clinical evidence study selection	51
Appendix E – Clinical evidence tables	52
Appendix F – Forest plots	
Triple therapy (LAMA+LABA+ICS) versus LAMA+LABA dual therapy	
Triple therapy (LAMA+LABA+ICS) versus LABA+ICS dual therapy	
Appendix G – GRADE tables	105
Triple therapy versus LAMA+LABA	105
Triple therapy versus LABA+ICS	107
Appendix H – Economic evidence study selection	111
Appendix I – Economic evidence tables	112
Appendix J – Excluded studies	114
Clinical studies	114

Economic studies	
Appendix K – References	
Included clinical studies	
Included economic studies	
Excluded economic studies	Error! Bookmark not defined.

Inhaled triple therapy

2 Review question

3 In people with stable COPD, what is the clinical and cost effectiveness of a LAMA plus a

- 4 LABA plus ICS compared with:
- a LAMA plus LABA?
 - a LABA plus an inhaled corticosteroid (ICS)

7 Introduction

6

8 The treatment of moderate to very severe COPD commonly includes the use of long-acting

9 bronchodilators and inhaled corticosteroids to ease symptoms and reduce exacerbations.

10 Inhaled drugs are often used in combination to provide more effective relief. Possible

11 combinations include long-acting muscarinic antagonist with long-acting beta-adrenoceptor

12 (LAMA+LABA) or LABA with inhaled corticosteroids (LABA+ICS).

13 'Triple therapy' is delivery of a combination of all three inhaled drugs (LAMA+LABA+ICS).

14 Triple therapy can be prescribed as a single inhaler which delivers all three drugs in one

15 dose or as multiple inhalers which deliver separate doses of each drug.

16 This review aimed to evaluate the effectiveness of triple therapy, either delivered as a 17 combination of inhalers, or as one single inhaler, in managing the symptoms of patients with 18 severe COPD in comparison to the dual therapy combinations of LAMA+LABA and

19 LABA+ICS. Single and multiple inhaler doses of triple therapy were included as separate

subgroups in the analyses in this review, but the main comparison of interest was between

the effects of dual and triple therapy, rather than inhaler type. Studies which specifically

compared the effectiveness of triple therapy alone using a single inhaled device or using

- separate inhalers were not eligible for inclusion in this review. The protocol for the review is
- 24 summarised in Table 1<u>Table 1</u>.

25 PICO table

26 Table 1 PICO for the comparative effectiveness of combinations of inhaled therapies

Population	 Patients aged > 35 years Diagnosis of COPD in accordance with American Thoracic Society- European Respiratory Society (ATS/ERS 2004), GOLD report (GOLD 2017) or equivalent criteria. Obstructive ventilator defect should be at least moderate, with a baseline FEV1 less than 80% of predicted. 					
Interventions	• LAMA + LABA + ICS					
Comparator	 LAMA + LABA LABA + ICS 					
Outcomes	 COPD exacerbation (moderate to severe and severe) St George's Respiratory Questionnaire (SGRQ) score and decrease in SGRQ score ≥ 4 units (responder) Transition Dyspnoea Index (TDI) Mortality Total serious adverse events (SAEs) Cardiac and COPD SAEs Dropouts due to adverse events Trough FEV1 					

	Pneumonia						
		Fractures (with degree of harm)					
		Exercise capacity					
		Resource use and costs					
1	Meth	ods and process					
2	Th	is evidence review was developed using the methods and process described in					
3		eveloping NICE guidelines: the manual. Methods specific to this review question are					
4	de	scribed in the review protocol in appendix A, and the methods section in appendix B.					
5	In	particular, the following definitions, key outcomes and methods have been adopted:					
6	1.	Exacerbations were divided into moderate to severe and severe categories in					
7		accordance with the COPD inhaled combination therapy review. A moderate					
8		exacerbation is defined as worsening of respiratory status that requires treatment with					
9		systemic corticosteroids and/or antibiotics; a severe exacerbation is defined as a rapid					
10		deterioration that requires hospitalisation. The moderate to severe exacerbation category					
11		included both types of exacerbations.					
12	2.	Data for the St George's Respiratory Questionnaire (SGRQ) were presented in 2 ways,					
13		depending on the format of data in the included studies: as changes in SGRQ total score					
14		and as the number of responders (decrease in SGRQ score of \geq 4 units).					
15	3.						
16		result, no pairwise data is presented for these comparisons even if both comparators are					
17 18		included in a triple therapy trial. Comparisons between LAMA+LABA and LABA+ICS are					
18		made in the existing <u>NICE COPD guideline (NG115)</u> . Only trials that used drug combinations that were within the licensed doses for use or used routinely in UK clinical					
20		practice were included as part of the review. The doses used in the included studies are					
20		summarised in Table 2.					
22	4	Forest plots are presented showing outcomes that favour triple therapy to the right of the					
23		chart. Where lower numbers favoured triple therapy, such as for exacerbation rate, the					
24		effect estimate was inverted to maintain consistency in the presentation of the forest					
25		plots.					
26	5.	The forest plots in the main analysis include subgroups for multiple (medication taken via					
27		multiple inhalers) and single inhalers (medication taken via a single inhaler) as all studies					
28		provided information on inhaler type. The GRADE tables only report the overall pooled					
29		result from the multiple and single inhaler type plots, unless tests for subgroup					
30		differences were significant (p<0.05). In these cases, the results for each subgroup as					
31		well as the pooled result from the inhaler type subgroup analysis are presented in the					
32		GRADE tables. To avoid duplication, the pooled results from other subgroup analyses					
33	~	were not reported in the GRADE tables.					
34	6.						
35		not possible to separate whole studies or groups of participants within studies by					
36		variation in baseline peak flow, FEV1 variability, asthma, smoking status or pulmonary					
37 38		rehabilitation completion status. However, sub-group analyses for inhaler type, exacerbation history, prior medication and eosinophil count were carried out. Different					
39		studies separated people by different eosinophil count thresholds, some by those above					
40		or below 200 cells per microliter and others by those above or below 150 cells per					
41		microliter. As a result, eosinophil count subgroups were separated into 'higher eosinophil					
42		count per microlitre including trials with cut offs of greater than 150 or 200 eosinophils per					
43		microlitre' and 'lower eosinophil counts per microlitre' for studies reporting less than 150					
44		or 200 eosinophils per microlitre. To try to assess the effect of including 2 different					
45		overlapping cut offs in each subgroup, a sensitivity analysis was carried out removing the					
46		study using 200 cells per microlitre as a cut-off (Singh 2016 for triple therapy versus					
47		LABA+ICS, Papi 2018 for triple therapy versus LAMA+LABA).					

- 1 The search strategies used in this review are detailed in appendix C.
- 2 Declarations of interest were recorded according to <u>NICE's 2014 conflicts of interest policy</u>.

3 Clinical evidence

4 Included studies

- 5 This review was conducted as part of an update of the <u>NICE COPD guideline (NG115).</u> A
- 6 systematic literature search for randomised controlled trials (RCTs) and systematic reviews
- 7 was conducted from the date of the searches in the previous version of the guideline (May
- 8 2003) and this identified 2,133 references. Details of the search strategy are included in
- 9 appendix C.
- 10 All of the abstracts were screened on title and abstract with 114 papers ordered as
- 11 potentially relevant systematic reviews or RCTs. Another paper (Ferguson 2018), which was
- 12 published soon after the search date, was also included because it was considered to be
- directly relevant to the review and had the potential to alter the recommendations. Thirteen
- 14 papers, reporting 16 RCTs, were included after full text screening. Of these, 2 compared
- triple therapy with LAMA+LABA, 12 compared triple therapy with LABA+ICS and 2 compared
- 16 triple therapy with both LAMA+LABA and LABA+ICS.
- 17 Details of the review protocol are included in appendix A and the process of study
- 18 identification is summarised in the diagram in appendix D.

19 Excluded studies

20 The excluded studies are listed in appendix J with reasons for their exclusion.

1 Summary of clinical studies included in the evidence review

2 The included studies are summarised in <u>Table 2</u>. For detailed evidence tables refer to appendix E.

3 Table 2 Summary of studies comparing triple therapy versus dual therapy

Short Title	Population	Interventions	Relevant outcomes
Aaron (2007) Canadian study	 Sample size: 449 Split between study groups: Triple: 145 Dual: 148 Mono: 156 Loss to follow-up: Triple: 2 Dual: 2 %female: Triple: 42.1% Dual: 42.6% Mean age (SD): Triple: 67.5 (8.9) Dual: 67.6 (8.2) Current smoker (%): Dual: 24.3% Triple: 32.4% FEV1 (mean, SD): Prebronchodilator Dual: 1.00 (0.44) Triple: 1.05 (0.38) Postbronchodilator Dual: 1.08 (0.43) Triple: 1.12 (0.41) 	 Dual therapy LAMA+LABA: Tiotropium/Salmeterol <i>Tiotropium 18 ug, once daily</i> Salmeterol 25 ug two puffs, twice daily Triple therapy Tiotropium/Fluticasone-Salmeterol <i>Tiotropium 18 ug, once daily</i> <i>Fluticasone 250 ug + Salmeterol 25 ug, two</i> puffs, twice daily 	 Moderate to severe exacerbations · Serious adverse events Pneumonia TDI Severe exacerbations Mortality Dropouts due to serious adverse events Cardiac serious adverse events COPD serious adverse events
Cazzola (2007) Italian study	 Sample size: 81 Split between study groups: Triple: 29 Dual: 26 %female: Triple: 13% Dual: 13% Mean age (SD): Triple: 66.9 (59.0-74.8) Dual: 64.4 (58.8-70) Current smoker (%): Triple: 80.0% Dual: 93.3% 	 Dual therapy LABA+ICS (Fluticasone-Salmeterol) <i>Fluticasone propionate 500 ug + Salmeterol</i> <i>50 ug, twice daily</i> Triple therapy Tiotropium/Fluticasone-Salmeterol <i>Fluticasone propionate 500 ug + Salmeterol</i> <i>50 ug, twice daily</i> <i>Tiotropium 18 ug, once daily</i> 	
Ferguson (2018) International study (Canada,	• Sample size: 1902 • Split between study groups: Triple: 640 Dual (LAMA+LABA): 627 Dual (LABA+ICS): 316	• Dual therapy LAMA+LABA: Glycopyrrolate/formoterol <i>Glycopyrrolate 18 ug + Formoterol fumarate</i> 9.6 ug LABA+ICS: Budesonide/formoterol	 Moderate to severe exacerbations • SGRQ score SGRQ responders Serious adverse events Pneumonia TDI

China, Japan, USA)	Open-label dual: 319 • Loss to follow-up: Triple: 10 Dual (LAMA+LABA): 2 Dual (LABA+ICS): 0 • %female: Triple: 28% Dual (LAMA+LABA): 31.2% Dual (LABA+ICS): 28.7% • Mean age (SD): Triple: 64.9 (7.8) Dual (LAMA+LABA): 65.1 (7.7) Dual (LABA+ICS): 65.2 (7.2) • Current smoker (%): Triple: 40.1% Dual (LAMA+LABA): 41.1% Dual (LABA+ICS): 36.6%	Budesonide 320 ug + Formoterol fumarate 9.6 ug • Triple therapy Budesonide/glycopyrrolate/formoterol Budesonide 320 ug + Glycopyrronium 14.4 ug + Formoterol fumarate 10 ug	 Trough FEV1 Mortality Dropout due to serious adverse events Cardiac serious adverse events
Frith (2015) Australian & New Zealand study	 Sample size: 773 Split between study groups: Triple (Glycopyrronium): 258 Triple (Tiotropium): 258 Dual: 257 Loss to follow-up: Triple (Glycopyrronium): 0 Triple (Tiotropium): 0 Dual: 2 %female: Triple (Glycopyrronium): 36.6% Triple (Tiotropium): 38% Dual: 32.3% Mean age (SD): Triple (Glycopyrronium): 68.2 (8.38) Triple (Tiotropium): 68.0 (7.74) Dual: 67.8 (8.49) Current smoker (%): Triple (Glycopyrronium): 35.4% Triple (Tiotropium): 35.7% Dual: 36.2% Ex-smoker (%): Triple (Glycopyrronium): 64.6% Triple (Tiotropium): 64.3% Dual: 63.8% FEV1 (mean, SD): Triple (Glycopyrronium): 1.52 (0.50) Triple (Tiotropium): 1.49 (0.47) Dual: 1.55 (0.48) 	Triple therapy	 Serious adverse events Pneumonia Trough FEV1 Mortality Dropout due to serious adverse events Cardiac serious adverse events COPD serious adverse events
Hoshino (2013) Japanese study	• Split between study groups: Triple: 15 Dual: 16 Mono 1: 15 Mono	 Dual therapy LABA+ICS (Fluticasone-Salmeterol) Salmeterol 50 ug + Fluticasone propionate 250 ug, twice daily Triple therapy Tiotropium + Fluticasone-Salmeterol Tiotropium 18 ug once daily Salmeterol 50 ug + Fluticasone propionate 250 ug, twice daily 	• SGRQ score

Lipson (2017) and Tabberer (2018) International study (15 countries)	 Sample size: 1811 (extension population 430) Split between study groups: Triple: 911 Dual: 899 Extension population triple: 210 Extension population dual: 220 %female: Triple: 26% Dual: 26% Extension population triple: 25% Extension population dual: 26% Mean age (SD): Triple: 64.2 (8.56) Dual: 63.7 (8.71) Extension population triple: 63.7 (7.76) Extension population dual: 63.3 (8.43) Current smoker (%): Triple: 44% Dual: 44% 	LABA+ICS: Budesonide/Formoterol Budesonide 400 ug + formoterol 12 ug, twice daily • Triple therapy	 Moderate to severe exacerbations • SGRQ score SGRQ responders Serious adverse events Pneumonia TDI Trough FEV1
Lipson (2018) International study (37 countries)	 Sample size: 10335 Split between study groups: Dual (LAMA+LABA): 2070 Dual (LABA+ICS): 4134 Triple: 4151 %female Dual (LAMA+LABA): 34% Dual (LABA+ICS): 34% Triple: 33% Mean age (SD) Dual (LAMA+LABA): 65.2 (8.3) Dual (LABA+ICS): 65.3 (8.3) Triple: 65.3 (8.2) Ex-smoker (%): Dual (LAMA+LABA): 65% Dual (LABA+ICS): 66% Triple: 65% 	LAMA+LABA: Umeclidinium/Vilanterol Umeclidinium 62.5 ug + Vilanterol trifenatate 25 ug LABA+ICS: Fluticasone/Vilanterol Fluticasone furoate 100 ug + Vilanterol trifenatate 25 ug • Triple therapy Fluticasone/Umeclidinium/Vilanterol	 Moderate to severe exacerbations • SGRQ score SGRQ responders Serious adverse events Pneumonia Trough FEV1 Severe exacerbations Mortality Dropout due to serious adverse events
Papi (2018) Italian study	 Sample size: 1532 Split between study groups: Dual: 768 Triple: 764 Loss to follow-up: Dual: 3 Triple: 4 %female: Dual: 28% Triple: 28% Mean age (SD): Dual: 64.5 (7.7) Triple: 64.4 (7.7) Current smoker (%): Dual: 43% Triple: 46% Ex-smoker (%): Dual: 57% Triple: 54% FEV1 (mean, SD): Dual: 1.07 (0.31) Triple: 1.07 (0.31) 	LAMA+LABA: Indacaterol/Glycopyrronium Indacaterol 85 ug + Glycopyrronium 43 ug, once per day	 Moderate to severe exacerbations • SGRQ responders Serious adverse events Pneumonia
Siler (2015) International studies	 Sample size: Study 1: 619 Study 2: 620 Split between study groups: Study 1 Triple: 206 Study 1 Dual: 206 Study 2 Triple: 206 Study 2 Dual: 206 Loss to follow-up: Study 1 Triple: 1 Study 1 Dual: 0 	• Dual therapy Both studies: LABA+ICS (Fluticasone- Vilanterol) <i>Fluticasone furoate 100 ug + Vilanterol 25</i>	 Moderate to severe exacerbations • SGRQ score SGRQ responders Serious adverse events Pneumonia

(Study 1: Argentina, Canada, Chile, Romania, USA Study 2: Czech Republic, Germany, Korea, USA)	Study 2 Triple: 0 Study 2 Dual: 2 • %female: Study 1 Triple: 33% Study 1 Dual: 32% Study 2 Triple: 33% Study 2 Dual: 39% • Mean age (SD): Study 1 Triple: 64.9 (8.72) Study 1 Dual: 64.7 (7.90) Study 2 Triple: 62.6 (8.12) Study 2 Dual: 62.6 (9.00) • Current smoker (%): Study 1 Triple: 39% Study 1 Dual: 44% Study 2 Triple: 58% Study 2 Dual: 58% • FEV1 (mean, SD): Study 1 Triple: 1.12 (0.45) Study 1 Dual: 1.16 (0.46) Study 2 Triple: 1.24 (0.44) Study 2 Dual: 1.29 (0.47)	• Triple therapy Both studies: Umeclidinium + Fluticasone- Vilanterol Umeclidinium 62.5 ug, once daily Fluticasone furoate 100 ug + Vilanterol, 25 ug, once daily	 Trough FEV1 Mortality Dropout due to adverse events
Siler (2016) International studies (Study 1: Canada, Germany, Korea, USA Study 2: Chile, Czech Republic, Korea, USA)	 Sample size: Study 1: 617 Study 2 Dual: 1.29 (0.47) Sample size: Study 1: 617 Study 2: 608 Split between study groups: Study 1 Triple: 204 Study 1 Dual: 205 Study 2 Triple: 203 Study 2 Dual: 201 Loss to follow-up: Study 1 Triple: 14 Study 1 Dual: 27 Study 2 Triple: 25 Study 2 Dual: 31 %female: Study 1 Triple: 35% Study 1 Dual: 36% Study 2 Triple: 31% Study 2 Dual: 39% Mean age (SD): Study 1 Triple: 62.7 (7.84) Study 1 Dual: 63.4 (8.27) Study 2 Triple: 64.5 (8.31) Study 2 Dual: 65.7 (7.92) Current smoker (%): Study 1 Triple: 50% Study 1 Dual: 57% Study 2 Triple: 36% Study 2 Dual: 38% FEV1 (mean, SD): Study 1 Triple: 1.31 (0.47) Study 1 Dual: 1.31 (0.46) Study 2 Triple: 1.15 (0.44) Study 2 Dual: 1.13 (0.45) 	 Dual therapy Both studies: LABA+ICS (Fluticasone- Salmeterol) <i>Fluticasone propionate 250 ug + Salmeterol</i> <i>50 ug, twice daily</i> Triple therapy Both studies: Umeclidinium + Fluticasone- Salmeterol <i>Umeclidinium 62.5 ug, once daily</i> <i>Fluticasone propionate 250 ug + Salmeterol</i> <i>50 ug, twice daily</i> 	 Moderate to severe exacerbations • SGRQ score Serious adverse events Pneumonia Trough FEV1 Mortality Dropout due to serious adverse events
Singh (2016) International study (14 countries)	 Sample size: 1368 Split between study groups: Triple: 687 Dual: 681 Loss to follow-up: Triple: 2 Dual: 5 %female: Triple: 26% Dual: 23% Mean age (SD): Triple: 63.3 (7.9) Dual: 63.8 (8.2) Current smoker (%): Triple: 47% Dual: 47% Ex-smoker (%): Triple: 53% Dual: 53% FEV1 (mean, SD): Triple: 1.11 (0.32) Dual: 1.10 (0.33) 	 Dual therapy LABA+ICS: Beclometasone/Formoterol Beclometasone dipropionate 100 ug + Formoterol fumarate 6 ug, two puffs, twice per day Triple therapy Beclometasone/Formoterol/Glycopyrronium Glycopyrronium bromide 12.5 ug + Beclometasone diproprionate 100 ug + Formoterol fumarate 6 ug, two puffs, twice per day 	 SGRQ responders Serious adverse events Pneumonia TDI

Sousa (2016)	Sample size: 236	Dual therapy	SGRQ score
	 Split between study groups: Triple: 119 Dual: 117 	ICS/LABA combinations	 SGRQ responders
Furonean study	• Loss to follow-up: Dual: 0 Triple: 1	Range of ICS/LABA (exact combinations no	t• Trough FEV1
(Czech	%female: Dual: 36% Triple: 30%	stated) at approved doses	
•	 Mean age (SD): Dual: 63.1 (7.9) Triple: 65.2 (7.5) 	 Triple therapy 	
Republic,	Current smoker (%): Dual: 61% Triple: 49%	Umeclidinium/ICS/LABA	
Germany,	• FEV1 (mean, SD): Triple: 1.33 (0.49) Dual: 1.37 (0.50)	Umeclidinium 62.5 ug + Range of ICS/LABA	
Greece,		(exact combinations not stated) at approved	
Netherlands)		doses	
Abbreviations			

FEV1: Forced expiratory volume SGRQ: St George's Respiratory Questionnaire (SGRQ score = continuous outcome; SGRQ responders = dichotomous outcome) TDI: Transition Dysphoea Index

1

1 Quality assessment of clinical studies included in the evidence review

- 2 The RCTs were assessed for risk of bias and applicability and this information is presented in
- 3 the evidence tables in appendix E. See appendix G for full GRADE tables.

4 Economic evidence

5 Included studies

- 6 A systematic search was carried out for this review question. The search returned 1,421
- 7 records, of which 1,419 were excluded on title and abstract. The remaining 2 papers were
- 8 screened in full, and 1 was included in the evidence review.

9 Since a relevant UK-based analysis was identified, and *de novo* economic modelling was

conducted for this review question, only studies using an NHS perspective were included in
 the evidence review.

12 Excluded studies

13 Details of the studies excluded at full text review are given in Appendix J.

1 Summary of studies included in the economic evidence review

Hertel et al. (2012) conducted a cost-utility analysis comparing various combinations of LAMA, LABA, ICS and roflumilast in patients with severe
 and very severe COPD (summarised in Table 3 below). The evaluation used a lifetime horizon, and was conducted from the perspective of the
 NHS.

5 The authors used a Markov structure to model COPD treatment, with states based on GOLD stages 3 and 4 (30%–50% predicted FEV1 and <

6 30% predicted FEV1 respectively). In each cycle, patients could remain in the same state, progress to a more severe state or die. Patients were

7 also at risk of exacerbations, which could be community- or hospital-treated. The model also allowed patients to "step up" to a second line regimen

8 (add in another drug) in each cycle.

9 The probability of progressing to a more severe GOLD stage was modelled based on the mean rate of FEV1 decline in COPD patients. Mortality

10 was incorporated by applying a standardised mortality ratio for COPD to the background mortality rate for the UK general population. In addition,

11 hospitalised exacerbations were associated with a probability of death. Treatment effects were implemented through relative exacerbation rates,

12 which were derived from a network meta-analysis.

The analysis included 3 cost categories: (1) maintenance costs (estimated using resource use data from a tiotropium trial and unit costs data from

14 NHS Reference Costs); (2) exacerbation costs (estimated using resource use data from the GOLD strategy group, and unit cost data from NHS

15 Reference Costs); and (3) drug costs (from the BNF). Utilities were incorporated as baseline QoL scores stratified by GOLD stage, to which utility

16 decrements were applied for patients experiencing exacerbations.

17 Results showed that triple therapy produces an ICER of £4,300 per QALY compared to LAMA+LABA and an ICER of £6,960 compared to

18 LABA+ICS (calculated manually as the authors do not report ICERs).

19 This analysis was categorised as being partially applicable as it was conducted prior to the introduction of single fixed-dose triple therapy inhalers,

and therefore uses outdated costs and clinical evidence. It was classified as having potentially serious limitations, as it relies on assumed

21 exacerbation rates with no empirical basis, does not a conduct a probabilistic sensitivity analysis for the comparisons of interest, and is subject to a

22 potential conflict of interest (the study was funded by a manufacturer of roflumilast).

23 Table 3 – Summary of Hertel et al. (2012)

Study	1. Applicability 2. Limitations	Comparison(s)	Setting	Duration Discount rate(s)	Results / conclusion	Uncertainty
-------	------------------------------------	---------------	---------	---------------------------------	----------------------	-------------

Hertel et al. (2012)	 Partially applicable ^a Potentially serious limitations ^b 	 Triple therapy LABA+ICS LAMA+LABA 	UK	Lifetime 3.5% for costs and health effects	Triple therapy produces an ICER of £6,960/QALY compared to LABA+ICS. Triple therapy produces an ICER of £4,300/QALY compared to LAMA+LABA	The authors did not report sensitivity analysis results for the comparisons of interest
(b) Relies on		bation rates, does not cor			utdated costs and clinical evidence) is for the comparison of interest, subject	to a potential conflict of interest

1 Economic model

- 2 This section summarises the *de novo* economic modelling conducted for this review
- question. For a full description of methods, results and conclusions please refer to the model
 report in Chapter C.
- 5 This analysis is based on the economic modelling conducted for the 2018 update of this
- 6 guideline, which assessed the cost effectiveness of mono and dual long-acting
- 7 bronchodilator regimens.

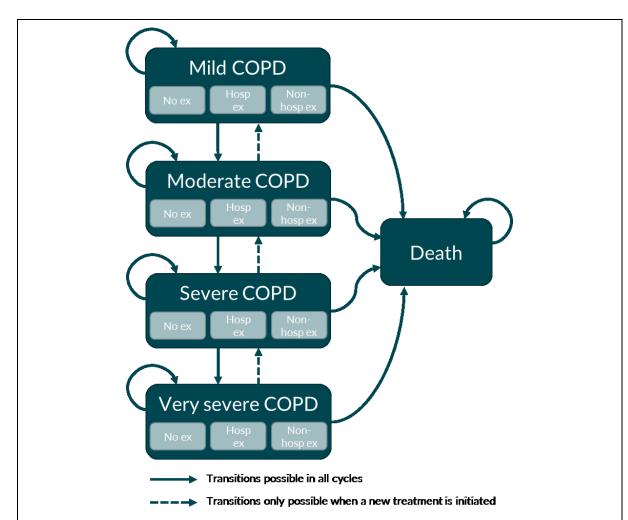
8 **Population**

- 9 Adults diagnosed with COPD who continue to experience breathlessness or exacerbations,
- 10 despite treatment with a dual long-acting bronchodilator regimen (LAMA+LABA or
- 11 LABA+ICS).

12 Comparators

- 13 Three treatment regimens are included in the analysis:
- 14 1. Triple therapy (LAMA+LABA+ICS)
- 15 2. LAMA+LABA
- 16 3. LABA+ICS
- 17 Since the review question focuses on the clinical and cost effectiveness of triple therapy
- 18 compared with dual therapy (rather than on dual therapy regimens compared with each
- 19 other), the model assesses 2 separate decision problems:
- 20 1. Triple therapy versus LAMA+LABA
- 21 2. Triple therapy versus LABA+ICS

22 Methods


23 Model structure

24 In order to represent the natural history of COPD over time, the model uses a Markov structure, with states based on GOLD severity stages 1-4, defined by FEV1 percent 25 predicted (mild COPD = FEV1 ≥ 80% predicted; moderate COPD = 50% ≤ FEV1 < 80%; 26 27 severe COPD = 30% ≤ FEV1 < 50% predicted; very severe COPD = FEV1 < 30% predicted). The model structure is shown in Figure 1. In each cycle of the model, patients have a 28 probability of moving to a more severe GOLD stage (defined by the natural rate of FEV1 29 decline over time), and a probability of death (defined by stage-specific mortality rates). In 30 the first cycle of the model, patients can move to a less severe GOLD stage, in order to 31 32 reflect the initial FEV1 benefit for patients stepping up from dual therapy to triple therapy.

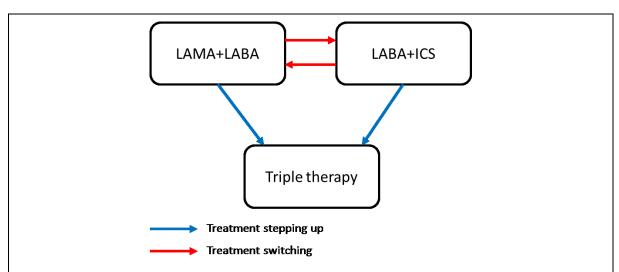
In each cycle, patients can also experience a hospitalised or non-hospitalised exacerbation,
 or an adverse event. The model uses a 3-month cycle length, which was deemed an

- appropriate period of time to capture progression between states, as well as interfacing well
 with clinical trial data on long-acting bronchodilators, which typically use 3-, 6-, or 12-month
- 37 endpoints.

2 Figure 1 – Overall structure of the model

3 The model also simulates patients' treatment progression over time. In each cycle, patients

4 treated with dual therapy regimen (LAMA+LABA or LABA+ICS) have a probability of either


5 stepping up to triple therapy, or switching to an alternative dual therapy regimen (patients on

6 a LAMA+LABA switch to a LABA+ICS, and vice versa). The pathway for treatment

7 progression is shown in Figure 2. We made the assumption that no further stepping up or

8 switching occurs once patients are initiated onto triple therapy.

9

1 Figure 2 – treatment progression pathway in the model

2 Baseline patient population and natural history

- 3 To inform the initial distribution of patients' FEV1 at baseline, we used data on patients
- 4 identified through the Clinical Practice Research Datalink (CPRD) who had a diagnosis of
- 5 COPD, received treatment with either a LABA+ICS or LAMA+LABA, and were coded as
- 6 having breathlessness or exacerbations in the year after initiating dual therapy.^a Other
- 7 baseline and natural history data were the same as in the original 2018 model.

8 Incorporating treatment effects

9 Treatment benefits

18

10 We used the pairwise meta-analyses conducted for this review question comparing triple therapy with LAMA+LABA, and triple therapy with LABA+ICS to inform treatment effects in 11 12 the model. These provided a number of outcomes which could be used to model relative treatment benefit: exacerbations, FEV1, breathlessness (TDI), and condition-specific quality 13 of life (SGRQ). However, incorporating all of these outcomes simultaneously in the model 14 15 would introduce double-counting of benefits. Therefore, we modelled a number of scenarios, using the following combinations of outcomes: 16 17

- Scenario 1: Exacerbations alone •
- Scenario 2: SGRQ and exacerbations
- Scenario 3: FEV1 and exacerbations this scenario allows differences in transition 19 20 probabilities in the first cycle of the model, with more effective treatments associated with a greater probability of moving to a less severe GOLD stage, as well as including 21 22 effects of exacerbations on quality of life
- 23 Scenario 4: TDI and exacerbations - this scenario uses coefficients from a • regression analysis in order to predict the effect of breathlessness on SGRQ score, 24 as well as including effects of exacerbations on quality of life 25
- Scenario 5: FEV1, TDI and exacerbations as above, this scenario uses 26 • 27 coefficients from a multiple regression analysis in order to predict the independent effect of FEV1, breathlessness and exacerbations in the previous year on SGRQ, as 28 29 well as including effects of exacerbations on quality of life
- 30 Effect on treatment progression
- 31 Differences in the probability of stepping up treatment were implemented by assuming an
- 32 inverse relationship with treatment effect on TDI, since breathlessness provides a reasonable
- 33 indication of how well patients' disease symptoms are managed. Differences in the

^a Thanks to Jennifer Quint of Imperial College London for CPRD data analysis

Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence reviews for inhaled triple therapy DRAFT (February 2019)

- 1 probability of treatment switching were implemented using treatment effects on
- 2 discontinuation due to adverse events.
- 3 <u>Treatment effects on mortality and adverse events</u>
- 4 Treatment effects on mortality were applied directly to baseline mortality for each GOLD 5 stage.
- Adverse events were categorised as either cardiac, pneumonia, or 'other' events. Treatment
 effects from the clinical evidence review for the appropriate adverse event category were
- applied to these, using total serious adverse events as a proxy for the 'other' eventscategory.
- 10 Since the mortality and adverse event outcomes were generally associated with a high 11 degree of uncertainty, the model explores the impact of including and excluding these
- 12 treatment effects through 3 scenarios:
- **Option A:** Treatment-specific differences in adverse events and mortality excluded
- Option B: Treatment-specific differences in adverse events, but not mortality, included
- **Option C:** Treatment-specific differences in adverse events and mortality included

17 **Costs**

- 18 Five categories of cost were used in the model:
- 19 1. **Drug costs** acquisition costs of long-acting bronchodilators
- 20 2. **Maintenance costs** routine healthcare resource use for each GOLD severity stage
- Exacerbation costs resource use associated with a hospitalised or non hospitalised exacerbation
- Adverse event costs costs associated with treating acute and chronic adverse
 events
- 5. Treatment progression costs healthcare costs associated with switching or
 stepping up treatment
- 27 In the base case, we assumed that all regimens were delivered as single fixed-dose inhalers,
- rather than as separate devices. This assumption was relaxed in a scenario analysis where
- triple therapy is delivered via 2 separate inhaler devices: a LABA+ICS combination inhaler
 plus a LAMA inhaler.

31 Health-related quality of life

- 32 Patients' stable quality of life (QoL) initially depended upon their GOLD stage, with disutilities
- applied depending on whether patients experienced an exacerbation or adverse event within
 each cycle.
- 35 SGRQ values were used to inform patients' baseline QoL. These were converted to EQ-5D
 36 scores via a mapping algorithm in line with the NICE Reference Case.

37 Results

- 38 Results presented in this section are means of 5,000 probabilistic iterations. Structural
- 39 uncertainty in the model is also addressed stochastically, by randomly selecting 1 of the
- 40 5 scenarios for implementing treatment benefit in each iteration. Individual results for these
- 41 scenarios and additional sensitivity analyses are reported in Chapter C (economic model
- 42 report).

20

1 Triple therapy versus LAMA+LABA

- 2 Table 4 shows results comparing triple therapy to LAMA+LABA when treatment-specific
- differences in adverse events and mortality are excluded. These results indicate that triple 3
- 4 therapy produces an ICER of £5,182 per QALY compared with LAMA+LABA and has an
- 5 89.6% probability of being cost effective when QALYs are valued at £20,000.

Table 4 – Mean probabilistic results for triple therapy versus LAMA+LABA. Option A: 6

7 treatment-specific differences in adverse events and mortality excluded

	Absolute		Increment	Prob CE at		
Strategy	Costs	QALYs	Costs	QALYs	ICER	£20k/QALY
LAMA+LABA	£28,438	4.97	-	-	-	10.4%
Triple therapy	£28,637	5.01	£199	0.038	£5,182	89.6%

8 Table 5 shows results when treatment-specific differences in adverse events are included.

9 These results indicate that triple therapy dominates LAMA+LABA (is both more effective and

- less costly), and has a 70.1% probability of being cost effective when QALYs are valued at 10
- 11 £20,000.

12 Table 5 – Mean probabilistic results for triple therapy versus LAMA+LABA. Option B: treatment-specific differences in adverse events (but not mortality) included 13

	Absolute		Incremen	Prob CE at		
Strategy	Costs	QALYs	Costs	QALYs	ICER	£20k/QALY
Triple therapy	£28,735	5.01	-	-	-	70.1%
LAMA+LABA	£29,064	4.94	£329	-0.075	dominated	29.9%

- 14 Table 6 shows results when treatment-specific differences in both adverse events and
- 15 mortality are included. These results indicate that triple therapy produces an ICER of £4.979
- per QALY compared to LAMA+LABA and has an 89.9% probability of being cost effective 16
- when QALYs are valued at £20,000. 17

18 Table 6 – Mean probabilistic results for triple therapy versus LAMA+LABA. Option C: 19 treatment-specific differences in adverse events and mortality included

	Absolute		Incrementa	Prob CE at		
Strategy	Costs	QALYs	Costs	QALYs	ICER	£20k/QALY
LAMA+LABA	£27,279	4.69	-	-	-	10.1%
Triple therapy	£28,911	5.02	£1,632	0.328	£4,979	89.9%

20 Table 7 summarises results for other scenario analyses which test key model assumptions

21 for Option A. These results show that using the acquisition cost of triple therapy delivered as

2 separate inhalers, rather than 1 combination product, produces an ICER of above £20,000 22

per QALY (£22,313 per QALY), with a low probability of being cost effective if QALYs are 23

- valued at £20,000 (38.6%). However, triple therapy remains cost effective across all other 24
- 25 scenarios.

1 2 3

Table 7 – Results for other scenario analyses testing key model assumptions – triple therapy versus LAMA+LABA. Option A (treatment-specific differences in adverse events and mortality excluded)

	ve	Incremer triple thei rsus LAMA	Prob triple therapy CE at	
Scenario	Cost	QALYs	ICER	£20k/QALY
Triple therapy delivered as 2 separate inhalers	£847	0.038	£22,313	38.6%
Drug costs not adjusted for adherence	£288	0.039	£7,379	83.7%
Continuous treatment effect at 3, 6 and 12 mo	£181	0.054	£3,330	92.3%
No FEV1 benefit when switching and stepping up	£173	0.051	£3,434	93.6%
Trelegy trial data for baseline FEV1 distribution	£125	0.040	£3,151	92.9%
Cheapest product used for every regimen	£237	0.039	£6,107	87.7%
More severe values for baseline breathlessness	£198	0.036	£5,451	89.6%
Baseline GOLD distribution for comparison of triple therapy versus LABA+ICS used	£188	0.040	£4,698	91.4%

4 Triple therapy versus LABA+ICS

Table 8 shows results comparing triple therapy to LABA+ICS when treatment-specific 5

differences in adverse events and mortality are excluded. These results indicate that triple 6

therapy produces an ICER of £881 per QALY compared with LABA+ICS, and has a 99.2% 7

probability of being cost effective when QALYs are valued at £20,000. 8

Table 8 – Mean probabilistic results for triple therapy versus LABA+ICS. Option A: 9 10 treatment-specific differences in adverse events and mortality excluded

	Absolute	Absolute		Incremental			
Strategy	Costs	QALYs	Costs	QALYs	ICER	£20k/QALY	
LABA+ICS	£28,567	4.90	-	-	-	0.8%	
Triple therapy	£28,631	4.98	£64	0.073	£881	99.2%	

11 Table 9 shows results when treatment-specific differences in adverse events are included.

Results indicate that triple therapy produces an ICER of £138 per QALY compared with 12

13 LABA+ICS, and has a 74.6% probability of being cost effective when QALYs are valued at

£20,000. 14

15 Table 9 – Mean probabilistic results for triple therapy versus LABA+ICS. Option B:

16 treatment-specific differences in adverse events (but not mortality) included

	Absolute		Incremental			Prob CE at
Strategy	Costs	QALYs	Costs	QALYs	ICER	£20k/QALY
LABA+ICS	£28,261	4.92	-	-	-	25.4%
Triple therapy	£28,273	5.01	£11	0.083	£138	74.6%

17 Table 10 shows results when treatment-specific differences in adverse events and mortality

18 are included. Results indicate that triple therapy produces an ICER of £3,437 per QALY

19 compared with LABA+ICS and has a 75.7% probability of being cost effective when QALYs

are valued at £20,000. 20

22

1 Table 10 – Mean probabilistic results for triple therapy versus LABA+ICS. Option C: 2 treatment-specific differences in adverse events and mortality included

	Absolute	Absolute		Incremental			
Strategy	Costs	QALYs	Costs	QALYs	ICER	Prob CE at £20k/QALY	
LABA+ICS	£28,094	4.90	-	-	-	24.3%	
Triple therapy	£28,517	5.02	£423	0.123	£3,437	75.7%	

Table 11 summarises results for other scenario analyses which test key model assumptions
 for Option A. These results show that using an acquisition cost for triple therapy that reflects

5 use of two separate inhalers, rather than 1 combination product, increases the ICER to

6 £9,493 per QALY; substantially higher than the base case ICER. Triple therapy retains a

7 relatively low ICER across all other scenarios.

Table 11 – Results for other scenario analyses testing key model assumptions – triple therapy versus LABA+ICS. Option A (treatment-specific differences in adverse events and mortality excluded)

	Incremental: triple therapy versus LAMA+ICS		Prob triple therapy	
Scenario	Cost	QALYs	ICER	CE at £20k/QALY
Triple therapy delivered as 2 separate inhalers	£683	0.072	£9,493	82.5%
Drug costs not adjusted for adherence	£168	0.073	£2,308	98.3%
Continuous treatment effect at 3, 6 and 12 months	£75	0.068	£1,091	93.8%
No FEV1 benefit when switching and stepping up	-£51	0.124	Dominant	99.3%
Trelegy trial data for baseline FEV1 distribution	-£74	0.075	Dominant	99.8%
Cheapest product used for every regimen	£358	0.073	£4,918	93.5%
More severe values for baseline breathlessness	£61	0.069	£892	99.4%

11 Discussion

12 Results show that triple therapy is likely to be cost effective compared to both LAMA+LABA 13 and LABA+ICS in patients who continue to exacerbate or remain breathless on dual therapy 14 if QALYs are valued at £20,000. This finding is primarily due to favourable treatment effects 15 of triple therapy on exacerbations, FEV1, TDI and SGRQ (even though, in some cases, the data are consistent with no effect at a 95% confidence level). While the acquisition cost of 16 triple therapy is higher than that of either dual therapy regimen, this difference is relatively 17 18 modest in relation to the health benefits; triple therapy costs an additional £16 per 30 days of treatment versus LABA+ICS, and an additional £12 per 30 days of treatment versus 19 20 LAMA+LABA (assuming full adherence). Furthermore, this cost is at least partially offset by 21 savings from prevented exacerbations.

22 Probabilistic sensitivity analysis shows a high degree of certainty that triple therapy is cost effective compared with both LAMA+LABA and LABA+ICS when treatment-specific 23 24 differences in adverse events and mortality are excluded. This is because triple therapy produces strong treatment benefits across a number of outcomes. Contrastingly, including 25 treatment effects on adverse events and mortality produces a higher degree of uncertainty in 26 results, although triple therapy still retains a >70% probability of being cost effective at a 27 threshold of £20,000 per QALY compared with both LAMA+LABA and LABA+ICS. This is 28 due to the relatively wide confidence intervals around these effects, in particular the 29 treatment effect on cardiovascular events. 30

31 Scenario analyses show that results are generally robust to key model assumptions. The 32 exception to this is the scenario in which triple therapy is assumed to be delivered as 2

33 separate inhalers, which produces a substantial increase in ICERs, particularly for the

- 1 comparison of triple therapy with LAMA+LABA, for which the ICER exceeds £20,000 per
- 2 QALY. This is because delivering triple therapy as 2 inhalers is more costly than using a
- 3 single combination inhaler: £56.48 versus £45.50 per 30 days of treatment. While this
- 4 difference may not appear excessive, it constitutes a considerable proportional increase in
- 5 the incremental cost of triple therapy compared with dual therapies.

6 Evidence statements

7 Clinical evidence statements

- 8 The format of the evidence statements is explained in the methods in <u>appendix B</u>. Where
- 9 possible, outcomes were analysed at 3, 6 and 12 months from the beginning of the
- 10 intervention. If no time points are specified in the evidence statement for a particular outcome
- 11 then this statement applies to all the time points where evidence was available for that
- 12 outcome.

13 Triple therapy versus LAMA+LABA

- 14 Moderate quality evidence from up to 4 studies with up to 9,310 people showed a reduction
- 15 in dropouts due to serious adverse events but a greater number of people experiencing
- 16 pneumonia in people offered triple therapy compared to LAMA+LABA.
- 17 Low to high quality evidence from up to 2 studies with up to 7,753 people showed a reduction
- 18 in the rate of severe exacerbations per person per year and an increase in SGRQ
- responders at 12 months for people offered triple therapy compared to LAMA+LABA, but the
- 20 point estimates were less than the defined individual minimal clinically important differences.
- High quality evidence from up to 4 studies with up to 9,310 people found no meaningful
 difference in the rate of moderate to severe exacerbations per patient per year, the numbers
- of people experiencing serious adverse events, change in FEV1, SGRQ responders at 6
- 24 months, change in TDI at 6 months or change in total SGRQ score at 12 months for people
- 25 offered triple therapy compared to LAMA+LABA.
- Low to moderate quality evidence from up to 4 studies with up to 9,310 people could not
- 27 differentiate mortality, the number of people experiencing moderate to severe or severe
- exacerbations, the number of COPD or cardiac serious adverse events or TDI scores at 12
- 29 months for people offered triple therapy compared to LAMA+LABA.

30 Triple therapy versus LAMA+LABA: subgroup analyses

- 31 No subgroup differences were identified between the following categories:
- studies using multiple inhaler triple therapy compared to those using single triple therapy
 for all of the outcomes examined
- studies with patients taking LAMA+LABA prior to the intervention compared to those
 taking any other combination of medications
- studies including patients with a higher eosinophil count per microlitre compared to those
 with a lower eosinophil count per microlitre
- studies which included patients with an exacerbation in the past 12 months compared to
 those with either no exacerbation in the past 12 months or studies that didn't have
 previous exacerbations in the inclusion criteria.
- Subgroup analyses were not possible for the following categories because insufficient data
 was provided to separate whole studies or groups of participants within studies:
- variation in baseline peak flow
- FEV1 variability

- 1 asthma status
- 2 smoking status
- 3 pulmonary rehabilitation completion status

4 Triple therapy versus LAMA+LABA: eosinophil sensitivity analysis (removing study with 5 cut off of 200 cells per microlitre)

No meaningful differences in results were identified compared to the analysis including thisstudy.

8 Triple therapy versus LABA+ICS

9 Very low to high quality evidence from up to 8 studies with up to 11,884 people showed a

10 lower rate of severe exacerbations per patient per year, an improvement in FEV1 and fewer

dropouts due to serious adverse events for people offered triple therapy compared to
 LABA+ICS.

13 Low to moderate quality evidence from up to 7 studies with up to 10,080 people showed a

14 reduction in the number of people experiencing moderate to severe exacerbations, an

15 increase in SGRQ responders at 6 and 12 months, but the point estimates were less than the

16 defined individual minimal clinically important differences.

17 Very low to high quality evidence from up to 5 studies with up to 10,605 people found no

18 meaningful difference in the rate of moderate to severe exacerbations per patient per year,

total SGRQ score or TDI score at 6 and 12 months for people offered triple therapycompared to LABA+ICS.

21 Very low to moderate quality evidence from up to 9 studies with up to 13,252 people could

22 not differentiate mortality, serious adverse events, COPD serious adverse events,

pneumonia or the number of SGRQ responders at 3 months for people offered triple therapy

24 compared to LABA+ICS.

25 Triple therapy versus LABA+ICS: subgroup analysis

- 26 Moderate quality evidence from 3 RCTs with up to 4,953 people who had a lower • 27 eosinophil count per microlitre showed a reduction in the rate of moderate to severe 28 exacerbations for people offered triple therapy compared to LABA+ICS, although this was less than the MID. High quality evidence from 3 studies with up to 5,648 people who 29 30 had a higher eosinophil count per microlitre showed a reduction in the rate of moderate to 31 severe exacerbations for people offered triple therapy compared to LABA+ICS. 32 No subgroup differences were identified between studies using multiple inhaler triple • therapy compared to single inhaler triple therapy for most of the outcomes apart from 33 change in FEV1 at 3 months. 34 • Very low guality evidence from 8 studies with 2,653 people showed an increase in 35 36 FEV1 at 3 months for people offered multiple inhaler triple therapy compared to LABA+ICS, but the point estimate was less than the defined MID. 37 38 Moderate quality evidence from 1 study with 1,810 people showed an increase in 0 FEV1 at 3 months for people offered single inhaler triple therapy compared to 39 40 LABA+ICS. 41 No subgroup differences were identified between studies which included patients with an • 42 exacerbation in the past 12 months compared to those with either no exacerbation in the 43 past 12 months or which didn't have previous exacerbations in the inclusion criteria apart 44 from change in FEV1 at 12 months.
- Moderate quality evidence from 1 study with 6,426 people who had an
 exacerbation in the past 12 months showed an improvement in FEV1 at 12
 months for people offered triple therapy compared to LABA+ICS, but the point
 estimate was less than the defined MID.

- Moderate quality evidence from 1 study with 430 people who were not required to have had an exacerbation in the past 12 months as part of the study inclusion criteria showed an improvement in FEV1 at 12 months for people offered triple therapy compared to LABA+ICS.
- No subgroup differences were identified between studies with patients taking LABA+ICS
 prior to the intervention compared to those taking any other combination of medications
 prior to the intervention.
- 8
 9 Subgroup analyses were not possible for the following categories because insufficient data
 10 was provided to separate whole studies or groups of participants within studies:
- 11 variation in baseline peak flow
- 12 FEV1 variability

1

2

3

4

- 13 asthma status
- 14 smoking status
- 15 pulmonary rehabilitation completion status

Triple therapy versus LABA + ICS: eosinophil sensitivity analysis (removing study with cut off of 200 cells per microlitre)

No meaningful differences in results were identified compared to the analysis including thisstudy.

20 Economic evidence statements

- A directly applicable original model with minor limitations found that triple therapy has a high probability of being cost effective compared to LAMA+LABA (90%) and compared to
- LABA+ICS (99%) in the base case if QALYs are valued at £20,000. These results are

generally robust to sensitivity analysis, although making the assumption that triple therapy is delivered as 2 separate inhalers, rather than as 1 combined device, reduces the probability

that triple therapy is cost effective to 39% versus LAMA+LABA and 83% versus LABA+ICS.

20 Inat inple inerapy is cost ellective to 39% versus LAWA+LABA and 65% versus LABA+ICS.

A partially applicable study with potentially serious limitations (Hertel et al. 2012) found that triple therapy has an ICER of £4,300 per QALY compared to LAMA+LABA, and an ICER of £6,960 compared to LABA+ICS.

30 Recommendations

- 31 1. In people with COPD who are taking LABA+ICS, offer LAMA+LABA+ICS if: 32 their symptoms continue to interfere with activities of daily living or they have a severe exacerbation^b (requiring hospitalisation) or 33 34 they have 2 moderate exacerbations^c within a year. [2019] 35 2. In people with COPD who are taking LAMA+LABA, consider LAMA+LABA+ICS if: 36 37 they have a severe exacerbation^b (requiring hospitalisation) or 38 they have 2 moderate exacerbations^c within a year. [2019] 39 40 3. In people with COPD who are taking LAMA+LABA and whose symptoms continue to 41 interfere with daily living, consider a 3-month trial of LAMA+LABA+ICS, and:
 - if symptoms improve, continue with LAMA+LABA+ICS
- 42 43

^{If symptoms do not improve, switch back to LAMA+LABA. [2019]}

^b The person experiences a rapid deterioration in respiratory status that requires hospitalisation.

^c The person has a sustained worsening of respiratory status that requires treatment with systemic corticosteroids and/or antibiotics.

Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence reviews for inhaled triple therapy DRAFT (February 2019)

1 Rationale and impact

2 Why the committee made the recommendations

The committee decided that there should be separate recommendations on triple therapy for people who are currently taking LABA+ICS and for people taking LAMA+LABA. They agreed that there was stronger evidence from a greater number of studies that triple therapy benefits people taking LABA+ICS, compared with people taking LAMA+LABA.

For people currently taking LABA+ICS, the evidence showed that LAMA+LABA+ICS reduced
the rate of severe exacerbations, improved FEV1, and did not increase the risk of pneumonia
or other serious adverse events.

For people currently taking LAMA+LABA, the evidence showed that LAMA+LABA+ICS
 reduced the rate of serious exacerbations and provides some quality of life improvement.
 However, these improvements were smaller than the ones for people who were taking

LABA+ICS before they started triple therapy. In addition, people who switched from
 LAMA+I ABA to triple therapy were more likely to get pocumenia.

14 LAMA+LABA to triple therapy were more likely to get pneumonia.

The criteria for starting triple therapy are based on the inclusion criteria for the studies the
 committee reviewed. For people who are currently taking LAMA+LABA, the committee made
 separate recommendations for:

- people who are having severe or frequent exacerbations, for whom the benefit of fewer
 exacerbations outweighs the increased risk of pneumonia
- people with less severe symptoms, for whom it is less clear if triple therapy provides
 enough benefits to outweigh the risk of pneumonia.

The committee looked at making recommendations for people with asthmatic features.
However, the evidence excluded people with asthma and did not provide much information
on asthmatic features (such as eosinophil count). Because of this, and because people with
asthmatic features are likely to be covered by the recommendation for people taking
LABA+ICS, the committee agreed not to make a specific recommendation for this group.

27 The committee did not make a recommendation in favour of single or multiple inhaler devices as the included evidence did not show a meaningful difference in clinical effectiveness 28 29 between triple therapy compared to dual therapy based on the number of devices. From the economic evidence, using a single inhaler device was more cost effective, but the committee 30 31 agreed that there were circumstances where using multiple inhalers could be better for the person with COPD. Finally, the committee had already made a recommendation about the 32 factors to be taken into account when choosing an inhaler device and these included costs 33 34 and minimising the numbers of inhalers where possible so an additional recommendation on 35 this issue was unnecessary.

36 Impact of the recommendations on practice

37 The recommendations may result in an increase in the number of people who are prescribed

triple therapy and an increase in the number of people who need treatment for pneumonia,

39 although this may be mitigated by the relatively widespread current use of triple therapy.

40 However, the criteria for who should be offered triple therapy and the recommendation for a

41 trial period should limit the impact of both of these changes.

42 Triple therapy regimens have a higher cost than dual long-acting bronchodilator regimens.

43 However, this cost is likely to be at least partially offset by savings from reduced numbers of

44 exacerbations and better management of symptoms for people switching to triple therapy.

1 The committee's discussion of the evidence

2 Interpreting the evidence

3 The outcomes that matter most

4 Exacerbations and quality of life were considered to be the most important outcomes. It was 5 highlighted that a reduction in exacerbations, in particular severe exacerbations which 6 require hospitalisation, is seen as the critical outcome by people with COPD. Quality of life 7 was raised as an important indicator of the impact of COPD on the functional aspects of a 8 person's daily life. Quality of life at 12 months was considered particularly important as this 9 indicates whether the step-up to triple therapy provides long-term benefits. Pneumonia was 10 highlighted as an important negative outcome as an increased risk of pneumonia could outweigh the benefits of triple therapy and have a detrimental impact on a person's life. 11 12 However, it was highlighted that small increases in this risk are unlikely to outweigh more 13 pronounced reductions in the risk of being hospitalised with an acute exacerbation of COPD. 14 Other outcomes, such as change in trough FEV1, were suggested to be less useful as an

15 improvement in FEV1 alone is not necessarily enough to provide a noticeable difference to 16 someone with COPD if it is not accompanied by changes in other outcomes such as exacerbations. The committee agreed that although dropouts due to adverse events provide 17 an indication about the relative effectiveness of treatments, caution is needed as some of 18 19 these could reflect study design and be the effects of the step-down in medication for some 20 people who were taking triple therapy before being randomised to a dual therapy 21 combination. For instance, of those randomised to LAMA/LABA in Ferguson (2018), 25% 22 were using triple therapy prior to randomisation, while 32% of people randomised to 23 LABA/ICS were previously using triple therapy. In Lipson (2018), 35% of people randomised 24 to the LABA/LAMA and LABA/ICS groups were previously using triple therapy. Some studies 25 did not provide full details of the breakdown of inhaled therapy treatments used prior to randomisation. The committee agreed that this step-down in medication may have resulted in 26 withdrawal effects that were not relevant to their aim of evaluating the effects of a step-up to 27 28 triple therapy.

29 The quality of the evidence

30 For comparisons between triple therapy and LAMA+LABA the evidence ranged from low- to high-quality and no studies were based in the UK. However, all studies were considered 31 32 directly applicable to the review question and at low risk of bias. A greater number of studies compared the effects of triple therapy and LABA+ICS, with evidence ranging from very low-33 34 to high-guality. No studies were based in the UK, but all were directly applicable. The majority of studies were at moderate risk of bias due to limited information on allocation 35 36 concealment and blinding of participants and outcomes. However, the low heterogeneity in the majority of the results indicated that the inclusion of these studies did not change the 37 38 results for any of the outcomes. More detail on the risk of bias and applicability of each study is available in appendix E. 39

40 The committee raised concerns about the doses used in one of the LABA+ICS studies (Siler 41 2016). This study used a lower dose of fluticasone propionate and salmeterol in both 42 treatment arms than would typically be prescribed to people with COPD in the UK. Although 43 this dose was lower than what is most commonly prescribed, it is still taken by some people 44 in the UK, leading to its inclusion in the review. There was concern that prescribing a lower dose of steroids may have resulted in fewer people developing pneumonia than might 45 46 otherwise be seen in people who were prescribed the licensed dose, making the potential 47 negative effects of triple therapy less apparent. The committee discussed whether 48 recommendations based on these results could result in clinicians prescribing triple therapy 49 but at the higher dosage, potentially resulting in a greater number of side-effects. However, 50 heterogeneity was low in the majority of outcomes in which this study was included and so it

28

was decided that the study should remain part of the review as it did not skew the results to
favour triple therapy unduly.

3 A key discussion point was the methods used in many of the studies. The committee noted 4 that study design meant that some people who were previously taking LABA+ICS were 5 randomised to LAMA+LABA, and some who were taking triple therapy were randomised to 6 dual therapy. Both scenarios may have led to the studies detecting withdrawal effects from a 7 person's step-down in medication rather than the effects of dual and triple therapy. The 8 committee were particularly concerned about one of the studies (IMPACT trial, Lipson 2018), 9 which included a large number of participants and had a high weighting in many of the 10 outcomes for the meta-analysis. It was noted that 69% of people who were randomised to 11 the LAMA+LABA arm of the trial were previously on medication that included an ICS 12 component. This may have resulted in the study detecting a withdrawal effect from the removal of steroids from these people's medication. In addition, 34% of people randomised 13 14 to triple therapy had already been prescribed triple therapy. It was suggested that this may 15 have skewed the results towards favouring triple therapy, particularly during the first month of 16 the study where the exacerbation rate was higher for dual therapy than triple therapy. 17 However, the committee noted that the study reported a greater number of SGRQ 18 responders at 12 months for triple therapy, indicating that there may be long-term benefits of triple therapy for outcomes other than exacerbations. These long-term benefits, alongside 19 20 the low heterogeneity in results for the majority of outcomes in which this study was included, led the committee to include the study as part of the evidence review. 21

22 An additional issue was the combination of drugs used in some studies (TRIBUTE trial (Papi 23 2018), IMPACT trial (Lipson 2017)) where the drugs used in triple therapy were different to 24 those used in dual therapy. It was suggested that the results of these studies may reflect the 25 differences in the effects of individual drugs in addition to any differences between dual and 26 triple therapy. The issue of appropriate wash-out and run-in periods to reduce the effects of 27 changing medication was also raised. This was not clearly reported in some of the studies 28 and it was suggested that these could have helped to reduce the withdrawal effects that the 29 committee were concerned were being detected. However, the committee decided that despite these methodological issues, and those potentially associated with withdrawal 30 31 effects, there was still strong enough evidence to make recommendations in relation to the 32 use and potential benefits of triple therapy.

33 The committee considered the results from a number of subgroup analyses, with 34 comparisons made between the effects of using either a single inhaler or multiple inhalers to 35 deliver triple therapy. There were no detectable subgroup differences between single and 36 multiple inhalers for comparisons with LAMA+LABA and only one outcome (change in trough 37 FEV1 at 3 months) showed a difference for comparisons with LABA+ICS. This evidence, 38 favouring triple therapy over LABA+ICS for both single and multiple inhalers was low- to 39 moderate-quality with only one study evaluating the effects of using a single inhaler compared to several studies with multiple inhalers. The committee, agreed that the difference 40 41 in change in trough FEV1 alone, in the absence of effects on other key outcomes such as 42 exacerbations, was insufficient to allow any specific recommendations on how triple therapy 43 should be delivered.

Additional subgroup comparisons were made between people who had an exacerbation in
the 12 months prior to the study and those who had not had any exacerbations in the
previous 12 months or where exacerbations were not part of the inclusion criteria. However,
a number of studies did not report detailed information on exacerbation history and it is
possible that some of these may have included people who had prior exacerbations and
should therefore have been in the other subgroup.

50 The committee were also interested in whether the medication that a person was taking prior 51 to being prescribed triple therapy has an impact on the effects of triple therapy. However, 52 although two studies (Cazzola 2007, Sousa 2016) only included people who had previously been taking LABA+ICS, other studies either did not report the medication that people were taking prior to the study or included people who were taking any combination of mono, dual or triple therapy. This made it difficult to separate the studies into meaningful subgroups to help the committee make further recommendations based on the type of dual therapy taken currently.

6 Benefits and harms

7 This update is linked to the 2018 inhaled combination therapy review (evidence review F) 8 which considered which long-acting therapies were most beneficial for people with COPD 9 when short-acting therapy ceased to be sufficient to manage their symptoms. The 2018 update recommends that people with COPD who do not have asthmatic features/features 10 suggesting steroid responsiveness^d are offered LAMA+LABA. It also recognises that steroids 11 12 are an important component of treatment for people with COPD who have asthma and so 13 recommends LABA+ICS for people with both COPD and asthmatic features. It recommends that the choice of medication should be based on the trade-off between how much they 14 15 improve symptoms and reduce exacerbations against the potential side-effects. The current review had a similar aim, but for people with more severe COPD who still experience 16 17 symptoms despite being prescribed dual therapy. Given that both LAMA+LABA and 18 LABA+ICS were recommended for use in the 2018 update, the current update aimed to 19 determine whether people who are currently prescribed either of these medications should 20 be offered triple therapy. However, the committee noted that there were limitations in the 21 available evidence as few studies examined the effects of triple therapy for people who were 22 previously taking either LAMA+LABA or LABA+ICS. Instead the majority of studies included 23 people with COPD who were taking any combination of mono, dual or triple therapy. This 24 made it difficult to make direct recommendations on the effectiveness of triple therapy for 25 people currently taking either LAMA+LABA or LABA+ICS. Instead, the committee had to use 26 the evidence to infer which treatment options may be best for people with COPD who are 27 taking dual therapy, but still experiencing symptoms.

28 Based on the available evidence, the committee agreed that there were clear benefits for the 29 use of triple therapy over LABA+ICS, in particular a reduction in the rate of severe exacerbations per patient per year and improvements in FEV1. There was also a reduction in 30 the number of people experiencing moderate to severe exacerbations, and an increase in the 31 numbers of SGRQ responders at 6 and 12 months, but these values were less than the 32 33 defined individual minimal clinically important differences. In addition, there was no 34 detectable difference in the number of people experiencing pneumonia between the 2 35 groups. A reduction in the number of severe exacerbations may help to improve a person's quality of life by reducing the number of hospitalisations and use of rescue packs of 36 37 antibiotics and/or corticosteroids that people might otherwise need if their COPD were less 38 well controlled on dual therapy. Taking these results and those from the economic model into account, the committee decided to recommend that triple therapy be offered to people with 39 severe COPD who were taking LABA+ICS, but with a number of caveats. The committee 40 41 envisaged that if people taking LABA+ICS currently had their symptoms controlled by this 42 medication then it was unnecessary for them to switch to triple therapy. However, if their 43 symptoms proved limiting (i.e. stopped them from having a reasonable guality of life) or they 44 were having frequent or severe exacerbations, then the committee agreed that these people could benefit from triple therapy and it would be appropriate for these people to switch to this 45 46 medication. They decided to set the exacerbation requirement as 1 severe (requiring hospitalisation) or 2 moderate based on their clinical experience and the inclusion criteria 47 48 reported in the studies, the most common of which was one severe or two moderate 49 exacerbations in the previous year.

^d This includes any previous, secure diagnosis of asthma or of atopy, a higher blood eosinophil count, substantial variation in FEV1 over time (at least 400 ml) or substantial diurnal variation in peak expiratory flow (at least 20%).

Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence reviews for inhaled triple therapy DRAFT (February 2019)

1 The committee commented that it was not unexpected that there was no detectable 2 difference in the number of people experiencing pneumonia between the people offered triple 3 therapy compared to LABA+ICS (risk ratio 0.83 (0.69, 1.01), where values greater than 1 4 favour triple therapy). This was because the increased risk of pneumonia was associated 5 with the use of ICS and the people using LABA+ICS were already exposed to this risk. They 6 also noted that the addition of a LAMA to LABA+ICS to give triple therapy was also expected 7 to be beneficial for people with severe COPD based on the findings of the inhaled therapy 8 combinations review in the 2018 update. This review examined the clinical and cost 9 effectiveness of dual versus monotherapy and found that LAMA+LABA was the most 10 effective option for people with COPD. However, the committee recommended that people with asthmatic features/features suggesting steroid responsiveness^e follow a different 11 12 pathway that involved LABA+ICS instead as they agreed that it was inappropriate not to treat 13 these people with ICS. They also amended a 2010 triple therapy recommendation, which 14 referred to the conditions that needed to be met before people who were already taking 15 LABA+ICS could move to triple therapy, by including a reference to asthmatic 16 features/features suggesting steroid responsiveness to link this recommendation to the new 17 treatment pathway.

18 In the current update, the committee looked for evidence in the included trials to help them improve the definition of the population of people who would benefit from moving to triple 19 20 therapy. However, the trials excluded people with a current diagnosis of asthma and provided limited information on other asthmatic features such as eosinophil count. As a 21 22 result, the committee felt that there was insufficient evidence to make recommendations with 23 a specific reference to asthmatic features and therefore removed asthmatic features/features 24 suggesting steroid responsiveness from the recommendation to step up to triple therapy from 25 LABA+ ICS.

26 The committee also discussed the evidence for the clinical and cost effectiveness of triple 27 therapy compared to LAMA+LABA. Triple therapy resulted in a reduction in dropouts due to severe adverse events in comparison to LAMA+LABA. It also resulted in a reduction in the 28 29 rate of severe exacerbations per person per year and an increase in SGRQ responders at 12 months, but these values were less than the defined individual minimal clinically important 30 31 differences. However, the committee noted that the minimal clinically important differences 32 used for these outcomes were based on default statistical values of 0.8 for the lower limit and 33 1.25 for the upper limit, which correspond to a 20% decrease or a 25% increase in rates of 34 events or the risk of an event, depending on the way an outcome was measured. The 35 committee agreed that for some outcomes, such as exacerbations, a reduction in the risk or rate of exacerbations that was below the MID of 20% might be clinically meaningful, 36 37 particularly if it was associated with improvements across multiple outcomes. This was in keeping with their approach to the interpretation of the results of the network meta-analyses 38 in the inhaled combination therapy review from the 2018 update of this guideline. The 39 40 committee also noted the advantage of using an economic model to synthesise the different 41 levels of benefits and harms across multiple outcomes.

42 Although triple therapy showed some benefits over LAMA+LABA, there was also evidence of 43 a potential harm, with an increased risk of pneumonia with the use of triple therapy (risk ratio 44 0.65 (0.50, 0.84) for triple therapy compared to LAMA+LABA, where values greater than 1 45 favour triple therapy). However, the committee noted that although there was an increase in pneumonia with triple therapy, there were no meaningful differences between the two 46 47 treatments for serious adverse events, suggesting that the increased cases of pneumonia 48 may not have been severe and need to be weighed against the occurrence of other adverse 49 events, most obviously hospitalisation with severe acute COPD exacerbations. It was 50 however raised that some of the doses that will be prescribed to people may be higher than 51 those used in some of the studies or involve more potent formulations of ICS (namely

^e This includes any previous, secure diagnosis of asthma or of atopy, a higher blood eosinophil count, substantial variation in FEV1 over time (at least 400 ml) or substantial diurnal variation in peak expiratory flow (at least 20%).

Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence reviews for inhaled triple therapy DRAFT (February 2019)

fluticasone proprionate and fluticasone furoate), potentially further increasing the risk of pneumonia. The committee therefore agreed that the increased risk of pneumonia due to the addition of ICS, particularly in comparison to LAMA+LABA, is something that should be discussed with patients who are offered triple therapy. They noted that the increased risk of pneumonia was mentioned in an existing recommendation (1.2.9) in the 2018 update.

6 Although there was less evidence available to compare the effects of triple therapy and 7 LAMA+LABA the committee still felt that the results, particularly the reduction in severe 8 exacerbations, were important enough to include a recommendation in favour of its use for 9 people with COPD who continue to experience severe symptoms despite being prescribed LAMA+LABA. It was therefore agreed that the use of triple therapy should be considered for 10 11 people taking LAMA+LABA who continue to have severe or frequent exacerbations because, 12 for this group of people, the potential harm of pneumonia is outweighed by the potential 13 benefits.

14 The committee's main concern about people being stepped up from LAMA+LABA to triple 15 therapy was that the benefits may not outweigh the harms for people who have less severe 16 symptoms. There was also a suggestion that recommendations to use triple therapy may 17 lead to over-medication, with people being prescribed triple therapy who may otherwise have 18 experienced the same benefits using dual therapy. However, although Ferguson (2018) did 19 not report recent exacerbations as part of the inclusion criteria and did not detect an effect on 20 the rate of moderate to severe exacerbations, they did report improvements in guality of life 21 at 6 months. This suggests that there may still be some benefits in the use of triple therapy 22 for people with less severe COPD symptoms. The committee therefore agreed on an 23 additional recommendation which indicates that people who are currently prescribed 24 LAMA+LABA and do not meet the exacerbation criteria, but continue to have less severe, 25 uncontrolled, symptoms should initially be considered for a 3 month trial period of triple 26 therapy. They envisaged that this would provide clinicians with an opportunity to see if there 27 is a benefit from the step-up in medication as well as monitoring any potential side-effects. If 28 there are any adverse effects or no clear benefits then the recommendation supports a return 29 to dual therapy, avoiding any long-term harms and reducing the risk of over-medication. The 30 committee also expected that anyone who is prescribed triple therapy on a long-term basis 31 would have regular reviews of their medication to ensure it is still beneficial, as highlighted in 32 recommendation 1.2.134 and Table 6 (Summary of follow-up of people with COPD in primary 33 care) in the 2018 COPD guideline. Given the potential harm of pneumonia and the smaller 34 evidence base available to support the benefits of triple therapy for this group of people with 35 less severe symptoms, the committee made a weak recommendation for a step up to triple 36 therapy.

37 The committee discussed the use of single versus multiple inhalers to deliver triple therapy. They noted that although the results of the economic model suggested that single inhaler 38 39 triple therapy was more cost-effective than using multiple inhaler devices (see discussion in 40 the cost effectiveness and resource section below), subgroup analyses of the clinical data 41 did not detect a difference in effectiveness between these groups. In addition, this review 42 specifically did not include trials that only compared different types of device (i.e. triple 43 therapy versus triple therapy). The committee also agreed that, when making the step-up to 44 triple therapy, it may be preferable to start with multiple inhalers by adding the extra inhaler 45 to a person's current treatment, making it easier for a person to return to their previous dual 46 therapy combination if they fail to experience any benefits or if they experience any serious 47 side effects. The committee therefore decided against making a specific recommendation for 48 the use of single inhaler triple therapy. Although their recommendations did not specifically 49 make reference to the cost-effectiveness of single inhaler triple therapy, the choice of inhaler 50 is covered by recommendation 1.2.17 in the 2018 COPD guideline and this recommendation 51 takes into account issues such as cost and minimising inhaler number.

52 The committee noted that the included studies had high levels of current smokers (average 53 of 40%, but as high as 93.3% in 1 study) and that large numbers of people in the UK with

1 severe COPD still smoke. They stressed the importance of continuing to treat tobacco 2 dependence in people with all levels of severity of COPD to improve their quality of life. They 3 also noted that the conditions listed in the recommendations for dual therapy (offering 4 treatment for tobacco dependence if they smoke and optimised non-pharmacological 5 management (including pulmonary rehabilitation) and relevant vaccinations) were still 6 relevant for people with severe COPD. The committee did not restate these conditions as 7 they expected that, based on the treatment pathway outline in the guideline, people would 8 transition to triple therapy from dual therapy and thus already have had these discussions 9 with healthcare professionals. However, they stressed the continuing importance of offering 10 these interventions, and in particular treatment for tobacco dependence, at multiple points in

- the pathway. This is made clear by the algorithm, which places these treatment options
- 12 alongside the pathway for inhaled therapy.

13 Cost effectiveness and resource use

The committee were presented with economic evidence on the cost effectiveness of triple therapy, both from the *de novo* economic model developed for this guideline, and from the existing literature. The committee prioritised the evidence from the original model, since the 1 study identified by the economic literature review was considered to be only partially applicable, and had potentially serious limitations.

19 The committee considered the evidence from the de novo model and noted that, in the base 20 case, triple therapy is highly cost effective compared to LABA+ICS (ICER of £881 per 21 QALY). Probabilistic sensitivity analysis and scenario analyses also demonstrated that this 22 result is highly robust. The committee noted that this finding is logical, given that results of 23 the clinical evidence review show that triple therapy has favourable treatment effects versus 24 LABA+ICS across a number of outcomes. It was also noted that, while the acquisition cost of 25 triple therapy is higher than that of LABA+ICS, the incremental cost is relatively minor in relation to the magnitude of health benefits. In addition, this cost is partially offset by reduced 26 numbers of exacerbations. For this reason, the committee were confident in making a strong 27 28 recommendation for triple therapy in patients who are limited by symptoms or continue to 29 exacerbate despite treatment with LABA+ICS.

30 The committee observed that the economic model also shows that triple therapy is cost 31 effective compared with LAMA+LABA in the base case (ICER of £5.182), and probabilistic 32 sensitivity analysis shows that triple therapy has a relatively high probability (89.6%) of being 33 cost effective at a threshold of £20,000 per QALY. However, it was also noted that triple therapy has both a higher ICER and a lower probability of being cost effective compared with 34 LAMA+LABA than compared with LABA+ICS, due to clinical benefits of triple therapy versus 35 36 LAMA+LABA being less pronounced and more uncertain. The committee observed that this 37 finding is consistent with previous evidence on the relative effectiveness of mono and dual long-acting bronchodilator regimens: adding in a LAMA generally produces more clinical 38 39 benefit than adding an ICS. The majority of scenario analyses showed that triple therapy remains cost effective compared to LAMA+LABA. However, when the assumption is made 40 41 that triple therapy is delivered as 2 separate devices, the ICER rises to £22,313 per QALY. The committee noted that this is due to the higher acquisition cost of providing triple therapy 42 43 as 2 inhalers, rather than as 1 combination inhaler.

44 Based on this evidence, the committee felt confident in making a recommendation in favour 45 of triple therapy for patients whose symptoms are not adequately managed by LAMA+LABA. 46 However, they also determined that the threshold for prescribing triple therapy should be 47 higher for patients treated with a LAMA+LABA than for patients treated with a LABA+ICS, for a number of reasons. First, the evidence shows that addition of an ICS produces less clinical 48 49 benefit than addition of a LAMA for patients on dual therapy. Second, ICS is associated with 50 an increased incidence of pneumonia, the disbenefit of which must be balanced against the 51 benefits of treatment. Third, the committee felt that patients do not have a uniform capacity to 52 benefit from ICS; some patients may respond better than others to treatment. Therefore, the

- 1 committee opted to recommend that patients with 1 severe or 2 moderate exacerbations per
- 2 year while treated with a LAMA+LABA should be offered triple therapy, and that a trial of
- triple therapy should be considered in patients whose symptoms continue to interfere with
- 4 daily living while on a LAMA+LABA.

Since results of the economic model showed that triple therapy is less cost effective when
provided as 2 devices, the committee considered the appropriateness of explicitly
recommending that triple therapy should be provided as a single combination inhaler. They
determined that such a recommendation would be unnecessary, as the existing guideline

- already states that the number of inhalers should be minimised for all inhaled therapies.
- Furthermore, the committee indicated that it may be appropriate in some instances to provide
- an initial trial of triple therapy as 2 inhalers for patients stepping up from dual therapy, so that
- 12 they can easily revert to their original treatment if triple therapy is not tolerated.
- 13 The committee discussed the resource impact of their recommendations. They determined
- 14 that the number of patients treated with triple therapy may increase as a result, and therefore
- 15 the recommendations may produce an increase in spending (although this is likely to be
- 16 mitigated by widespread current use of triple therapy). However, the committee were
- 17 confident in their recommendations, given the robust economic and clinical evidence
- 18 supporting them. Furthermore, the additional spend may be (at least partially) offset by
- 19 savings from prevented exacerbations and better management of symptoms.

20 Other factors the committee took into account

21 In addition, the committee agreed that, although there is emerging evidence on eosinophils

and their role in COPD, currently it is unclear whether they should be used to initiate triple

- therapy or what the cut off level should be and they noted that it was important not to rely on
- eosinophil counts to make decisions on predicting response to therapy.

25

Appendices

2 Appendix A – Review protocols

3 Review protocol for inhaled triple therapy

Eield (based on	Content
Field (based on	
PRISMA-P)	
Review guestion	In people with stable COPD, what is the
Review question	• •
	clinical and cost effectiveness of a LAMA plus
	a LABA plus ICS compared with:
	a LADA alva an inholed continentancial
	 a LABA plus an inhaled corticosteroid
	(ICS)
	 a LAMA plus LABA?
Type of review	Intervention
question	Intervention
Objective of the	To determine the comparative effectiveness of
review	different drug classes for managing stable
	COPD
Eligibility criteria –	People diagnosed with COPD
population	
	Inclusion criteria from Cochrane Review:
	 Patients aged > 35 years
	 Diagnosis of COPD in accordance with
	American Thoracic Society-European
	Respiratory Society (ATS/ERS 2004),
	GOLD report (GOLD 2017) or equivalent
	criteria.
	Obstructive ventilator defect should be at
	least moderate, with a baseline FEV1 less
	than 80% of predicted.
Eligibility criteria –	LAMA+LABA+ICS
interventions	
Eligibility criteria –	LAMA + LABA
comparators	LABA + ICS
	Trials looking at LAMA+LABA versus
	LABA+ICS may be included to increase
	network strength if fewer than 3 trials are

	found for either comparison. In this case, only
	those trials with similarly severe populations of people as the triple therapy trials will be included.
Outcomes	 COPD exacerbation (moderate to severe and severe) St George's Respiratory Questionnaire (SGRQ) score and decrease in SGRQ score ≥ 4 units (responder) Transition Dyspnoea Index (TDI) Mortality Total serious adverse events (SAEs) Cardiac and COPD SAEs Dropout due to adverse event Trough FEV1 Pneumonia Fractures (with degree of harm) Exercise capacity Resource use and costs
Eligibility criteria – study design	RCTsSystematic reviews of RCTs
Other inclusion exclusion criteria	Trials with a follow-up of less than 12 weeks
Proposed sensitivity/sub-group analysis	 Subgroups: asthmatic features/features suggesting steroid responsiveness or no asthmatic features/features suggesting steroid responsiveness including eosinophil count variation in peak flow FEV1 variability asthma/atopy previous exacerbation history (exacerbation within the last 12 months or no exacerbation within the last 12 months/ not stated) smoking status (current vs ex-smokers) single inhalers used in combination for triple therapy versus single combined inhaler

	 pulmonary rehabilitation completion status (completed versus not completed/ not eligible) multimorbidities (including COPD with asthma, bronchopulmonary dysplasia, bronchiectasis, anxiety or depression)
Selection process – duplicate screening/selection/ analysis	 10% of the abstracts were reviewed by two reviewers, with any disagreements resolved by discussion or, if necessary, a third independent reviewer. If meaningful disagreements were found between the different reviewers, a further 10% of the abstracts were reviewed by two reviewers, with this process continued until agreement is achieved between the two reviewers. From this point, the remaining abstracts will be screened by a single reviewer. This review made use of the priority screening functionality with the EPPI-reviewer systematic reviewing software. See Appendix B for more details.
Data management (software)	See Appendix B
Information sources – databases and dates	See Appendix C
Identify if an update	Update of 2010 COPD guideline questions: What is the clinical and cost effectiveness of long-acting muscarinic antagonists plus long- acting beta2 agonists plus inhaled corticosteroids compared to long-acting beta2 agonists plus inhaled corticosteroids in the management of people with stable COPD? What is the clinical and cost effectiveness of long-acting muscarinic antagonists plus long- acting beta2 agonists plus inhaled corticosteroids compared to long-acting beta2 agonists plus long-acting muscarinic antagonists in the management of people with stable COPD?
Author contacts	Guideline update

Llighlight if	For dataile places and conting 4.5 of
Highlight if amendment to	For details please see section 4.5 of
	Developing NICE guidelines: the manual
previous protocol	
Search strategy – for one database	For details please see appendix C
Data collection	A standardised evidence table format will be
process –	used, and published as appendix E (clinical
forms/duplicate	evidence tables) or I (economic evidence
	tables).
Data items – define	For details please see evidence tables in
all variables to be	appendix E (clinical evidence tables) or I
collected	(economic evidence tables).
Methods for	See Appendix B
assessing bias at	
outcome/study level	
Criteria for	See Appendix B
quantitative	
synthesis	
Methods for	See Appendix B
quantitative analysis	
 – combining studies 	
and exploring	
(in)consistency	
Meta-bias	See Appendix B
assessment –	
publication bias,	
selective reporting	
bias Confidence in	Soo Appondix P
cumulative evidence	See Appendix B
Rationale/context –	For details please see the introduction to the
what is known	evidence review in the main file.
Describe	A multidisciplinary committee developed the
contributions of	evidence review. The committee was
authors and	convened by the NICE Guideline Updates
guarantor	Team and chaired by Andrew Molyneux in line
	with section 3 of <u>Developing NICE guidelines:</u>
	the manual.
	Staff from the NICE Guideline Updates Team
	undertook systematic literature searches,
	-
	appraised the evidence, conducted meta-
	analysis and cost-effectiveness analysis where

	appropriate, and drafted the evidence review in collaboration with the committee. For details please see Developing NICE guidelines: the manual.
Sources of funding/support	The NICE Guideline Updates Team is an internal team within NICE.
Name of sponsor	The NICE Guideline Updates Team is an internal team within NICE.
Roles of sponsor	The NICE Guideline Updates Team is an internal team within NICE.
PROSPERO registration number	N/A

1

1 Appendix B – Methods

2 Evidence synthesis and meta-analyses of pair-wise data

- 3 Where possible, meta-analyses were conducted to combine the results of studies for each
- 4 outcome. For mean differences, where change from baseline data were reported in the trials
- 5 and were accompanied by a measure of spread (for example standard deviation), these were
- 6 extracted and used in the meta-analysis. Where measures of spread for change from
- baseline values were not reported, the corresponding values at study end were used and
- 8 were combined with change from baseline values to produce summary estimates of effect.
- 9 All studies were assessed to ensure that baseline values were balanced across the
- treatment groups; if there were significant differences in important confounding variables at baseline these studies were not included in any meta-analysis and were reported separately.

12 Evidence of effectiveness of interventions

13 Quality assessment

- 14 Individual RCTs and quasi-randomised controlled trials were quality assessed using the
- Cochrane Risk of Bias Tool. Each individual study was classified into one of the following
 three groups:
- Low risk of bias The true effect size for the study is likely to be close to the estimated effect size.
- Moderate risk of bias There is a possibility the true effect size for the study is substantially different to the estimated effect size.
- High risk of bias It is likely the true effect size for the study is substantially different to
 the estimated effect size.
- Each individual study was also classified into one of three groups for directness, based on if there were concerns about the population, intervention, comparator and/or outcomes in the study and how directly these variables could address the specified review question. Studies were rated as follows:
- Direct No important deviations from the protocol in population, intervention, comparator and/or outcomes.
- Partially indirect Important deviations from the protocol in one of the population, intervention, comparator and/or outcomes.
- Indirect Important deviations from the protocol in at least two of the following areas:
- 32 population, intervention, comparator and/or outcomes.

33 Methods for combining intervention evidence

- Meta-analyses of interventional data were conducted with reference to the Cochrane Handbook for Systematic Reviews of Interventions (Higgins et al. 2011).
- 36 A pooled relative risk was calculated for dichotomous outcomes (using the Mantel–Haenszel
- 37 method). Both relative and absolute risks were presented, with absolute risks calculated by
- applying the relative risk to the pooled risk in the comparator arm of the meta-analysis (allpooled trials).
- 40 Fixed- and random-effects models (der Simonian and Laird) were fitted for all syntheses, with
- the presented analysis dependent on the degree of heterogeneity in the assembled
- 42 evidence. Fixed-effects models were the preferred choice to report, but in situations where

- 1 the assumption of a shared mean for fixed-effects model were clearly not met, even after
- 2 appropriate pre-specified subgroup analyses were conducted, random-effects results are
- 3 presented. Fixed-effects models were deemed to be inappropriate if one or both of the
- 4 following conditions was met:
- Significant between study heterogeneity in methodology, population, intervention or
 comparator was identified by the reviewer in advance of data analysis. This decision was
 made and recorded before any data analysis was undertaken.
- 8 The presence of significant statistical heterogeneity in the meta-analysis, defined as $I^2 \ge 50\%$.
- In any meta-analyses where some (but not all) of the data came from studies at high risk of bias, a sensitivity analysis was conducted, excluding those studies from the analysis. Results from both the full and restricted meta-analyses are reported. Similarly, in any meta-analyses where some (but not all) of the data came from indirect studies, a sensitivity analysis was conducted, excluding those studies from the analysis.
- 14 conducted, excluding those studies from the analysis.
- 15 In situations where subgroup analyses were conducted, pooled results and results for the
- 16 individual subgroups are reported when there was evidence of between group heterogeneity,
- 17 defined as a statistically significant test for subgroup interactions (at the 95% confidence
- 18 level). Where no such evidence was identified, only pooled results are presented.
- 19 Meta-analyses were performed in Cochrane Review Manager v5.3.

20 Minimal clinically important differences (MIDs)

21 The Core Outcome Measures in Effectiveness Trials (COMET) database was searched to identify published minimal clinically important difference thresholds relevant to this guideline. 22 23 Identified MIDs were assessed to ensure they had been developed and validated in a methodologically rigorous way, and were applicable to the populations, interventions and 24 25 outcomes specified in this guideline. In addition, the Guideline Committee were asked to 26 prospectively specify any outcomes where they felt a consensus MID could be defined from 27 their experience. In particular, any questions looking to evaluate non-inferiority (that one 28 treatment is not meaningfully worse than another) required an MID to be defined to act as a 29 non-inferiority margin.

- 30 MIDs found through this process and used to assess imprecision in the guideline are given in
- Table 12. For other mean differences where no MID is given below the line of no effect is
 used.

33 Table 12: Identified MIDs

Outcome	MID	Source
Total score in St. George's respiratory questionnaire	4 points (-4,+4)	Schünemann HJ, Griffith L, Jaeschke R, et al. Evaluation of the minimal important difference for the feeling thermometer and the St. George's Respiratory Questionnaire in patients with chronic airflow obstruction. J Clin Epidemiol (2003); 56: 1170–1176.
Change in Transition Dyspnoea Index (TDI)	1 point (-1, +1)	Witek TJ, Mahler DA. Minimal important difference of the transition dyspnoea index in a multinational clinical trial. The European respiratory journal 2003; 21:267-272.
Change in FEV1	100ml (-100, +100)	Cazzola M, MacNee W, Martinez M et al. Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J 2008; 31: 416–468.

41

- 1 The committee specified that any difference in mortality would be clinically meaningful, and
- therefore the line of no effect was used as an MID. For relative risks where no other MID was 2
- 3 available, the GRADE default MID interval for dichotomous outcomes of 0.8 to 1.25 was
- used. Incidence rate ratios were treated in the same way as relative risks, with a default MID 4
- 5 interval of 0.8 and 1.25 used for analysis.
- 6 In cases where the point estimate of effect fell on an MID boundary, it was taken as being
- 7 within the MID and therefore not being a clinically meaningful effect. If the 95% CI of the
- 8 point estimate fell on either or both of the MID boundaries it was taken as being within/inside
- 9 the MID.

10 GRADE for pairwise meta-analyses of interventional evidence

- 11 GRADE was used to assess the quality of evidence for the selected outcomes as specified in
- 12 'Developing NICE guidelines: the manual (2014)'. Data from RCTs was initially rated as high
- quality and the quality of the evidence for each outcome was downgraded or not from this 13
- initial point. If non-RCT evidence was included for intervention-type systematic reviews then 14
- 15 these were initially rated as either moderate quality (quasi-randomised studies) or low quality
- (cohort studies) and the quality of the evidence for each outcome was further downgraded or 16
- not from this point, based on the criteria given in Table 13 17

	e for downgrading quality of evidence for intervention studies
GRADE criteria	Reasons for downgrading quality
Risk of bias	Not serious: If less than 33.3% of the weight in a meta-analysis came from studies at moderate or high risk of bias, the overall outcome was not downgraded.
	Serious: If greater than 33.3% of the weight in a meta-analysis came from studies at moderate or high risk of bias, the outcome was downgraded one level.
	Very serious: If greater than 33.3% of the weight in a meta-analysis came from studies at high risk of bias, the outcome was downgraded two levels.
	Outcomes meeting the criteria for downgrading above were not downgraded if there was evidence the effect size was not meaningfully different between studies at high and low risk of bias.
Indirectness	Not serious: If less than 33.3% of the weight in a meta-analysis came from partially indirect or indirect studies, the overall outcome was not downgraded.
	Serious: If greater than 33.3% of the weight in a meta-analysis came from partially indirect or indirect studies, the outcome was downgraded one level.
	Very serious: If greater than 33.3% of the weight in a meta-analysis came from indirect studies, the outcome was downgraded two levels.
	Outcomes meeting the criteria for downgrading above were not downgraded if there was evidence the effect size was not meaningfully different between direct and indirect studies.
Inconsistency	Concerns about inconsistency of effects across studies, occurring when there is unexplained variability in the treatment effect demonstrated across studies (heterogeneity), after appropriate pre-specified subgroup analyses have been conducted. This was assessed using the I ² statistic.
	N/A: Inconsistency was marked as not applicable if data on the outcome was only available from one study.
	Not serious: If the I ² was less than 33.3%, the outcome was not downgraded. Serious: If the I ² was between 33.3% and 66.7%, the outcome was downgraded one level.
	Very serious: If the I ² was greater than 66.7%, the outcome was downgraded two levels.

18 Table 13: Rationale for downgrading quality of evidence for intervention studies

GRADE criteria	Reasons for downgrading quality
	Outcomes meeting the criteria for downgrading above were not downgraded if there was evidence the effect size was not meaningfully different between studies with the smallest and largest effect sizes.
Imprecision	If MIDs (1 corresponding to meaningful benefit; 1 corresponding to meaningful harm) were defined for the outcome, the outcome was downgraded once if the 95% confidence interval for the effect size crossed 1 MID, and twice if it crossed both the upper and lower MIDs.
	If the line of no effect was defined as an MID for the outcome, it was downgraded once if the 95% confidence interval for the effect size crossed the line of no effect (i.e. the outcome was not statistically significant), and twice if the sample size of the study was sufficiently small that it is not plausible any realistic effect size could have been detected.
	Outcomes meeting the criteria for downgrading above were not downgraded if the confidence interval was sufficiently narrow that the upper and lower bounds would correspond to clinically equivalent scenarios.

The quality of evidence for each outcome was upgraded if any of the following five conditionswere met:

- Data from non-randomised studies showing an effect size sufficiently large that it cannot be explained by confounding alone.
- 5 Data showing a dose-response gradient.
- Data where all plausible residual confounding is likely to increase our confidence in the effect estimate.

8 Publication bias

9 Publication bias was assessed in two ways. First, if evidence of conducted but unpublished

10 studies was identified during the review (e.g. conference abstracts, trial protocols or trial

11 records without accompanying published data), available information on these unpublished

12 studies was reported as part of the review. Secondly, where 10 or more studies were

13 included as part of a single meta-analysis, a funnel plot was produced to graphically assess

14 the potential for publication bias.

15 Evidence statements

16 For outcomes with a defined MID, evidence statements were divided into 4 groups as 17 follows:

- Situations where the data are only consistent, at a 95% confidence level, with an effect in
- 19 one direction (i.e. one that is 'statistically significant'), and the magnitude of that effect is
- 20 most likely to meet or exceed the MID (i.e. the point estimate is not in the zone of
- 21 equivalence). In such cases, we state that the evidence showed that there is an effect.

Situations where the data are only consistent, at a 95% confidence level, with an effect in one direction (i.e. one that is 'statistically significant'), but the magnitude of that effect is most likely to be less than the MID (i.e. the point estimate is in the zone of equivalence).
 In such cases, we state that the evidence showed there is an effect, but it is less than the defined MID.

- Situations where the confidence limits are smaller than the MIDs in both directions. In
 such cases, we state that the evidence demonstrates that there is no meaningful
 difference.
- In all other cases, we state that the evidence could not differentiate between the comparators.

- 1 For outcomes without a defined MID or where the MID is set as the line of no effect (for
- 2 example, in the case of mortality), evidence statements are divided into 2 groups as follows:
- We state that the evidence showed that there is an effect if the 95% CI does not cross the
 line of no effect.
- We state the evidence could not differentiate between comparators if the 95% CI crosses
 the line of no effect.
- 7 The number of trials and participants per outcome are detailed in the evidence statements,

8 but in cases where there are several outcomes being summarised in a single evidence

9 statement and the numbers of participants and trials differ between outcomes, then the

10 number of trials and participants stated are taken from the outcome with the largest number

of trials. This is denoted using the terminology 'up to' in front of the numbers of trials and
 participants.

13 The evidence statements also cover the quality of the outcome based on the GRADE table

14 entry. These can be included as single ratings of quality or go from one quality level to

- 15 another if multiple outcomes with different quality ratings are summarised by a single
- 16 evidence statement.

17 Health economics

18 Literature reviews seeking to identify published cost-utility analyses of relevance to the 19 issues under consideration were conducted for all guestions. In each case, the search 20 undertaken for the clinical review was modified, retaining population and intervention 21 descriptors, but removing any study-design filter and adding a filter designed to identify 22 relevant health economic analyses. In assessing studies for inclusion, population, 23 intervention and comparator, criteria were always identical to those used in the parallel 24 clinical search; only cost-utility analyses were included. Economic evidence profiles, 25 including critical appraisal according to the Guidelines manual, were completed for included 26 studies.

Economic studies identified through a systematic search of the literature are appraised using
a methodology checklist designed for economic evaluations (NICE guidelines manual; 2014).
This checklist is not intended to judge the quality of a study per se, but to determine whether
an existing economic evaluation is useful to inform the decision-making of the committee for
a specific topic within the guideline.

There are 2 parts of the appraisal process. The first step is to assess applicability (that is, the relevance of the study to the specific guideline topic and the NICE reference case);

34 evaluations are categorised according to the criteria in Table 14.

Level	Explanation
Directly applicable	The study meets all applicability criteria, or fails to meet one or more applicability criteria but this is unlikely to change the conclusions about cost effectiveness
Partially applicable	The study fails to meet one or more applicability criteria, and this could change the conclusions about cost effectiveness
Not applicable	The study fails to meet one or more applicability criteria, and this is likely to change the conclusions about cost effectiveness. These studies are excluded from further consideration

35 Table 14 Applicability criteria

- 1 In the second step, only those studies deemed directly or partially applicable are further
- 2 assessed for limitations (that is, methodological quality); see categorisation criteria in Table
- 3 15.

4 Table 15 Methodological criteria

Level	Explanation
Minor limitations	Meets all quality criteria, or fails to meet one or more quality criteria but this is unlikely to change the conclusions about cost effectiveness
Potentially serious limitations	Fails to meet one or more quality criteria and this could change the conclusions about cost effectiveness
Very serious limitations	Fails to meet one or more quality criteria and this is highly likely to change the conclusions about cost effectiveness. Such studies should usually be excluded from further consideration

5 Studies were prioritised for inclusion based on their relative applicability to the development

6 of this guideline and the study limitations. For example, if a high quality, directly applicable

7 UK analysis was available, then other less relevant studies may not have been included.

8 Where selective exclusions were made on this basis, this is noted in the relevant section.

9 Where relevant, a summary of the main findings from the systematic search, review and

10 appraisal of economic evidence is presented in an economic evidence profile alongside the 11 clinical evidence.

1 Appendix C – Literature search strategies

2 Clinical literature search

3 What is the clinical effectiveness of triple therapy for COPD (LAMA+LABA+ICS)?

- 4 Sources searched to identify the clinical evidence:
- 5

Databases	Date searched	Version/files	No. retrieved
Cochrane Central Register of Controlled Trials (CENTRAL)	5th Sept 2018	Issue 8 of 12, August 2018	714
Embase (Ovid)	28 th Aug 2018	Embase <1974 to 2018 Week 35>	1934
MEDLINE (Ovid)	28 th Aug 18	Ovid MEDLINE(R) ALL <1946 to August 27, 2018>	664
MEDLINE In-Process (Ovid)	28 th Aug 18	Ovid MEDLINE(R) In- Process & Other Non- Indexed Citations <august 2018="" 27,=""></august>	52
MEDLINE Epub Ahead of Print ^f	28 th Aug 18	Ovid MEDLINE(R) Epub Ahead of Print <august 27, 2018></august 	14
MHRA – Drug Safety Alerts ²	30 th Aug 18		0

- 6
- 7 The MEDLINE search strategy is presented below. This was translated for use in all of the
- 8 other databases listed. The aim of the search was to identify evidence for the clinical
- 9 question being asked. A Randomised Controlled Trial filter was used to identify the study
- 10 design specified in the Review Protocol.
- 11
- 12 1 lung diseases, obstructive/
- 13 2 exp pulmonary disease, chronic obstructive/
- 14 3 (copd or coad or cobd or aecb).tw.
- 15 4 emphysema*.tw.
- 16 5 (chronic* adj4 bronch*).tw.
- 17 6 (chronic* adj3 (airflow* or airway* or bronch* or lung* or respirat* or pulmonary) adj3
- 18 obstruct*).tw.
- 19 7 (pulmonum adj4 (volumen or pneumatosis)).tw.
- 20 8 pneumonectasia.tw.

^f Please search for both development and re-run searches

Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence reviews for inhaled triple therapy DRAFT (February 2019)

Dyspnea/ (chronic adj3 (breath* or respirat*) adj3 (difficult* or labor* or labour* or problem* or short*)).tw. (chronic* adj3 (dyspnea* or dyspnoea* or dyspneic or breathless*)).tw. or/1-11 Muscarinic Antagonists/ Parasympatholytics/ Cholinergic Antagonists/ (muscarinic* or antimuscarinic* or anti-muscarinic* or cholinergic* or anticholinergic* or anti-cholinergic* or parasympatholy*).tw. (lama or lamas).tw. Tiotropium Bromide/ tiotropium*.tw. tiova*.tw. spiriva*.tw. braltus*.tw. Glycopyrrolate/ glycopyr*.tw. glicopir*.tw. seebri*.tw. umeclidinium*.tw. incruse*.tw. aclidinium*.tw. eklira*.tw. or/13-30 Adrenergic beta-2 Receptor Agonists/ (beta* adj5 (receptor* or agonist*)).tw. (beta2 or beta-2 or "beta* 2" or B2 or B-2 or "B 2").tw. (laba or labas).tw. Formoterol Fumarate/ formoterol*.tw. foradil*.tw. oxis*.tw. Salmeterol Xinafoate/ salmeterol*.tw. serevent*.tw. indacaterol*.tw. onbrez*.tw. olodaterol*.tw. striverdi*.tw. vilanterol*.tw. or/32-47 Glucocorticoids/ (steroid* or corticosteroid* or cortico-steroid* or glucocortico* or gluco-cortico*).tw. ics.tw. Budesonide/ budesonide*.tw. pulmicort*.tw. budelin*.tw. Fluticasone/ fluticasone*.tw. flixotide*.tw. Beclomethasone/ (beclomethasone* or beclometasone*).tw. exp Mometasone Furoate/

- 1 62 mometasone*.tw.
- 2 63 asmanex*.tw.
- 3 64 ciclesonide*.tw.
- 4 65 alvesco*.tw.
- 5 66 or/49-65
- 6 67 31 and 48 and 66
- 7 68 12 and 67
- 8 69 ((triple* or three) adj5 (therap* or treat* or combin* or inhal* or drug*)).tw.
- 9 70 (3-in-1 or "3 in 1").tw.
- 10 71 trelegy*.tw.
- 11 72 trimbow*.tw.
- 12 73 or/69-72
- 13 74 12 and 73
- 14 75 68 or 74
- 15 76 Randomized Controlled Trial.pt.
- 16 77 Controlled Clinical Trial.pt.
- 17 78 Clinical Trial.pt.
- 18 79 exp Clinical Trials as Topic/
- 19 80 Placebos/
- 20 81 Random Allocation/
- 21 82 Double-Blind Method/
- 22 83 Single-Blind Method/
- 23 84 Cross-Over Studies/
- 24 85 ((random\$ or control\$ or clinical\$) adj3 (trial\$ or stud\$)).tw.
- 25 86 (random\$ adj3 allocat\$).tw.
- 26 87 placebo\$.tw.
- 27 88 ((singl\$ or doubl\$ or trebl\$ or tripl\$) adj (blind\$ or mask\$)).tw.
- 28 89 (crossover\$ or (cross adj over\$)).tw.
- 29 90 or/76-89
- 30 91 animals/ not humans/
- 31 92 90 not 91
- 32 93 75 and 92
- 33 94 limit 93 to english language
- 34

35 Health economic literature search

36

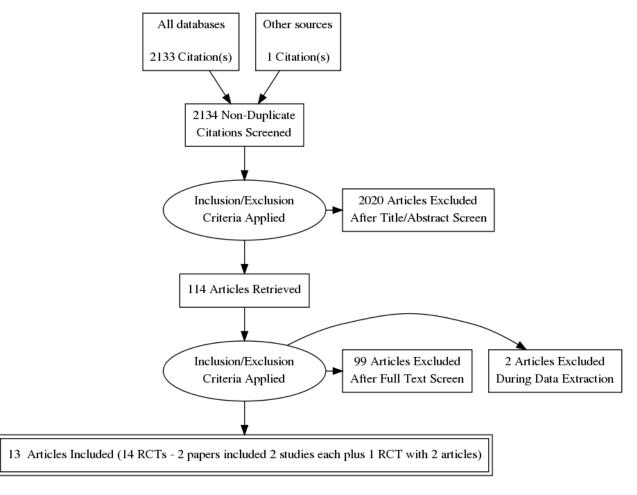
37 Economic evaluations and quality of life data

38 Sources searched to identify economic evaluations:

Economics	Date searched
MEDLINE (Ovid)	29 th Aug 2018
MEDLINE in Process (Ovid)	29 th Aug 2018
Embase (Ovid)	29 th Aug 2018
EconLit (Ovid)	29 th Aug 2018

39

- 40 Search filters to retrieve economic evaluations and quality of life papers were appended to
- 41 the search strategy to identify relevant evidence. The MEDLINE economic evaluations and


- 1 quality of life search filters are presented below. They were translated for use in MEDLINE in
- 2 Process and Embase databases.
- 3 Economic evaluations
- 4 1. Economics/
- 5 2. exp "Costs and Cost Analysis"/
- 6 3. Economics, Dental/
- 7 4. exp Economics, Hospital/
- 8 5. exp Economics, Medical/
- 9 6. Economics, Nursing/
- 10 7. Economics, Pharmaceutical/
- 11 8. Budgets/
- 12 9. exp Models, Economic/
- 13 10. Markov Chains/
- 14 11. Monte Carlo Method/
- 15 12. Decision Trees/
- 16 13. econom\$.tw.
- 17 14. cba.tw.
- 18 15. cea.tw.
- 19 16. cua.tw.
- 20 17. markov\$.tw.
- 21 18. (monte adj carlo).tw.
- 22 19. (decision adj3 (tree\$ or analys\$)).tw.
- 23 20. (cost or costs or costing\$ or costly or costed).tw.
- 24 21. (price\$ or pricing\$).tw.
- 25 22. budget\$.tw.
- 26 23. expenditure\$.tw.
- 27 24. (value adj3 (money or monetary)).tw.
- 28 25. (pharmacoeconomic\$ or (pharmaco adj economic\$)).tw.
- 29 26. or/1-25
- 30
- 31 Quality of Life
- 32 1. "Quality of Life"/
- 33 2. quality of life.tw.
- 34 3. "Value of Life"/
- 35 4. Quality-Adjusted Life Years/
- 36 5. quality adjusted life.tw.
- 37 6. (qaly\$ or qald\$ or qale\$ or qtime\$).tw.
- 38 7. disability adjusted life.tw.
- 39 8. daly\$.tw.
- 40 9. Health Status Indicators/
- 41 10. (sf36 or sf 36 or short form 36 or shortform 36 or sf thirtysix or sf thirty six or shortform
- 42 thirtysix or shortform thirty six or short form thirtysix or short form thirty six).tw.
- 43 11. (sf6 or sf 6 or short form 6 or shortform 6 or sf six or sfsix or shortform six or short form
 44 six).tw.
- 45 12. (sf12 or sf 12 or short form 12 or shortform 12 or sf twelve or sftwelve or shortform twelve
 46 or short form twelve).tw.
- 47 13. (sf16 or sf 16 or short form 16 or shortform 16 or sf sixteen or sfsixteen or shortform
- 48 sixteen or short form sixteen).tw.
- 49 14. (sf20 or sf 20 or short form 20 or shortform 20 or sf twenty or sftwenty or shortform
- 50 twenty or short form twenty).tw.
- 51 15. (euroqol or euro qol or eq5d or eq 5d).tw.
- 52 16. (qol or hql or hqol or hrqol).tw.
- 53 17. (hye or hyes).tw.

- 18. health\$ year\$ equivalent\$.tw. 1
- 2 19. utilit\$.tw.
- 3 20. (hui or hui1 or hui2 or hui3).tw.
- 4 21. disutili\$.tw.
- 5 22. rosser.tw.
- 6
- 23. quality of wellbeing.tw.24. quality of well-being.tw. 7
- 25. qwb.tw. 8
- 26. willingness to pay.tw.27. standard gamble\$.tw. 9
- 10
- 28. time trade off.tw. 11
- 12 29. time tradeoff.tw.
- 13 30. tto.tw.
- 31. or/1-30 14
- 15

16

- 17
- 18
- 19

Appendix E – Clinical evidence tables

Short Title	Title	Study characteristics	Risk of bias and directness
Aaron 2007	Tiotropium in Combination with Placebo, Salmeterol, or Fluticasone–Salmeterol for Treatment of Chronic Obstructive Pulmonary Disease	Study typeRandomised controlled trialStudy detailsStudy locationCanadaStudy settingMulti-centre studyStudy datesOctober 2003 - January 2006Duration of follow-up52 weeksSources of fundingCanadian Institutes of Health Research The Ontario Thoracic SocietyInclusion criteriaAge>35Current or ex-smokersHistory of 10+ pack-years of smokingFEV1<65%	Random sequence generation Low risk of biasAllocation concealment Low risk of biasBlinding of participants and personnel Low risk of biasBlinding of outcome assessment Low risk of biasBlinding of outcome

Short Title	Title	Study characteristics	Risk of bias and directness
		Chronic congestive heart failure	Directness
		Previous lung transplantation or lung resection	Directly applicable
		Sample characteristics Sample size 449 Split between study groups <i>Triple: 145 Dual: 148 Mono: 156</i> Loss to follow-up <i>Triple: 2 Dual: 2</i>	
		%female <i>Triple: 42.1% Dual: 42.6%</i> Mean age (SD) <i>Triple: 67.5 (8.9) Dual: 67.6 (8.2)</i> Current smoker (%) <i>Dual: 24.3% Triple: 32.4%</i> FEV1 (mean, SD) <i>Prebronchodilator Dual: 1.00 (0.44) Triple: 1.05 (0.38)</i> <i>Postbronchodilator Dual: 1.08 (0.43) Triple: 1.12 (0.41)</i>	
		Interventions Dual therapy LAMA+LABA: Tiotropium/Salmeterol Tiotropium 18 ug, once daily Salmeterol 25 ug two puffs, twice daily Triple therapy Tiotropium/Fluticasone-Salmeterol Tiotropium 18 ug, once daily Fluticasone 250 ug + Salmeterol 25 ug, two puffs, twice daily	

Short Title	Title	Study characteristics	Risk of bias and directness
		Outcome measure(s) Moderate to severe exacerbations during follow-up SGRQ score - <i>SD not provided so data was not extractable</i> Serious adverse events Pneumonia TDI Severe exacerbation Mortality Dropout due to SAEs Cardiac SAEs COPD SAEs	
Cazzola (2007)	A pilot study to assess the effects of combining fluticasone propionate/salmeterol and tiotropium on the airflow obstruction of patients with severe-to-very severe COPD.	Study type Randomised controlled trial Study details Study location Italy Duration of follow-up 12 weeks Sources of funding None reported Inclusion criteria Age >50 Current or ex-smokers History of 20+ pack-years of smoking FEV1:FVC <0.7	Random sequence generation Low risk of biasAllocation concealment Unclear risk of bias Insufficient information providedBlinding of participants and personnel Unclear risk of bias Insufficient information providedBlinding of participants and personnel Unclear risk of bias Insufficient information providedBlinding of participants and personnel Unclear risk of bias Insufficient information providedBlinding of outcome assessment

Short Title	Title	Study characteristics	Risk of bias and
		500/	directness
		<50%	Unclear risk of bias
			Insufficient information
		Exclusion criteria	provided
		Asthma diagnosis	
		Unstable respiratory disease	Incomplete outcome
		Requiring corticosteroids up to 4 weeks before screening	data
		Alcohol abuse	Low risk of bias
		Sample characteristics	Selective reporting
		Sample size	Low risk of bias
		81	
		Split between study groups	Other sources of bias
		Triple: 29 Dual: 26	Low risk of bias
		%female	
		Triple: 13% Dual: 13%	Overall risk of bias
		Mean age (SD)	Moderate
		Triple: 66.9 (59.0-74.8) Dual: 64.4 (58.8-70)	Insufficient information
		Current smoker (%)	provided for allocation
		Triple: 80.0% Dual: 93.3%	concealment and
			blinding of participants
		Interventions	and outcome
		Dual therapy	assessment
		LABA+ICS (Fluticasone-Salmeterol)	
		Fluticasone propionate 500 ug + Salmeterol 50 ug, twice daily	Directness
		Triple therapy	Directly applicable
		Tiotropium/Fluticasone-Salmeterol	
		Fluticasone propionate 500 ug + Salmeterol 50 ug, twice daily	
		Tiotropium 18 ug, once daily	
		Outcome measure(s)	
		Trough FEV1	

Short Title	Title	Study characteristics	Risk of bias and
			directness
Ferguson	Triple therapy with	Study type	Random sequence
(2018)	budesonide/glycopyrrolate/formoterol	Randomised controlled trial	generation
	fumarate with co-suspension delivery		Low risk of bias
	technology versus dual therapies in	Study details	
	chronic obstructive pulmonary disease	Study location	Allocation
	(KRONOS): a double-blind, parallel-	Canada, China, Japan and USA	concealment
	group, multicentre, phase 3 randomised	Study setting	Unclear risk of bias
	controlled trial.	Multi-centre study	Insufficient information
		Study dates	provided
		August 2015 - January 2018	
		Duration of follow-up	Blinding of
		24 weeks	participants and
		Sources of funding	personnel
		Pearl	Low risk of bias
		Inclusion criteria	Blinding of outcome
		Age	assessment
		40-80	Low risk of bias
		Current or ex-smokers	
		History of 10+ pack-years of smoking	Incomplete outcome
		FEV1	data
		25% - 80%	Low risk of bias
		Clinical history of COPD as defined by ATS guidelines	
		_ <i>"</i> .	Selective reporting
		Exclusion criteria	Low risk of bias
		Asthma diagnosis	
		Recent exacerbation	Other sources of bias
		In 6 weeks before screening	Unclear risk of bias
		Hospitalisation for COPD or pneumonia within 12 weeks of study	Funding source had role
		Use of LTOT	in study design, data
		>15 hours per day	collection, data analysis

Short Title	Title	Study characteristics	Risk of bias and directness
		Any respiratory disease other than asthma	and write-up
		Sample characteristics Sample size 1902	Overall risk of bias Low
		Split between study groups <i>Triple: 640 Dual (LAMA+LABA): 627 Dual (LABA+ICS): 316 Open-label</i> <i>dual: 319</i> Loss to follow-up <i>Triple: 10 Dual (LAMA+LABA): 2 Dual (LABA+ICS): 0</i> %female <i>Triple: 28% Dual (LAMA+LABA): 31.2% Dual (LABA+ICS): 28.7%</i> Mean age (SD) <i>Triple: 64.9 (7.8) Dual (LAMA+LABA): 65.1 (7.7) Dual (LABA+ICS):</i> <i>65.2 (7.2)</i> Current smoker (%) <i>Triple: 40.1% Dual (LAMA+LABA): 41.1% Dual (LABA+ICS): 36.6%</i>	Directness Directly applicable
		Interventions Dual therapy LAMA+LABA: Glycopyrrolate 18 ug + Formoterol fumarate 9.6 ug LABA+ICS: Budesonide 320 ug + Formoterol fumarate 9.6 ug Triple therapy Budesonide 320 ug + Glycopyrronium 14.4 ug + Formoterol fumarate 10 ug Outcome measure(s) Moderate to severe exacerbations during follow-up SGRQ score Serious adverse events Pneumonia TDI Trough FEV1	

Frith (2015) Glycopyrronium once-daily significantly cardiac SAEs Cardiac SAEs Random sequence generation Unclear risk of bias Frith (2015) Glycopyrronium once-daily significantly significantly improves lung function and health status when combined with salmeterol/fluitcasone in patients with COPD: the GLISTEN Study, a randomised controlled trial Study type Random sequence generation Unclear risk of bias Study details Study location Australia and New Zealand Insufficient information provided Study setting Study location Australia and New Zealand Allocation Study setting Nuclear risk of bias Insufficient information provided Ourclear risk of bias April 2012 - September 2013 Unclear risk of bias Duration of follow-up 12 weeks Sources of funding Novartis Pharmaceuticals Australia Pty Limited. Blinding of personnel Inclusion criteria Age Age >40 COPD diagnosis Moderate to severe stable COPD Blinding of outcome assessment Vicear risk of bias Insufficient information provided Insufficient information provided Vicear risk of bias Age Age Age >40 COPD diagnosis Moderate to severe stable COPD Blinding of outcome assessement	Short Title	Title	Study characteristics	Risk of bias and directness
improves lung function and health status when combined with salmeterol/fluticasone in patients with COPD: the GLISTEN study, a randomised controlled trial. Randomised controlled trial Unclear risk of bias Insufficient information provided Study location Australia and New Zealand Allocation concealment Insufficient information provided Study setting Multicentre study Allocation concealment Insufficient information provided Study setting Multicentre study Unclear risk of bias April 2012 - September 2013 Duration of follow-up 12 weeks Insufficient information participants and personnel Inclusion criteria Age Age Unclear risk of bias Age COPD diagnosis Insufficient information provided Insufficient information personnel Inclusion criteria Moderate to severe stable COPD Blinding of outcome assessment Unclear risk of bias Insufficient information provided FEV1 S0% and <80%			Dropout due to SAEs	
Recent exacerbation data	Frith (2015)	improves lung function and health status when combined with salmeterol/fluticasone in patients with COPD: the GLISTEN study, a	Randomised controlled trial Study details Study location Australia and New Zealand Study setting Multicentre study Study dates April 2012 - September 2013 Duration of follow-up 12 weeks Sources of funding Novartis Pharmaceuticals Australia Pty Limited. Inclusion criteria Age >40 COPD diagnosis Moderate to severe stable COPD FEV1:FVC <0.7	generation Unclear risk of bias Insufficient information providedAllocation concealment Unclear risk of bias Insufficient information providedBlinding of participants and personnel

Short Title	Title	Study characteristics	Risk of bias and directness
		In 6 weeks before screening	Low risk of bias
		Sample characteristics	Selective reporting
		Sample size 773	Low risk of bias
		Split between study groups	Other sources of bias
		<i>Triple (Glycopyrronium): 258 Triple (Tiotropium): 258 Dual: 257</i> Loss to follow-up	Low risk of bias
		<i>Triple (Glycopyrronium): 0 Triple (Tiotropium): 0 Dual: 2</i> %female	Overall risk of bias Moderate
		<i>Triple (Glycopyrronium): 36.6% Triple (Tiotropium): 38% Dual: 32.3%</i> Mean age (SD)	Insufficient information provided for random
		Triple (Glycopyrronium): 68.2 (8.38) Triple (Tiotropium): 68.0 (7.74) Dual: 67.8 (8.49)	sequence generation, allocation concealment
		Current smoker (%) <i>Triple (Glycopyrronium): 35.4% Triple (Tiotropium): 35.7% Dual: 36.2%</i> Ex-smoker (%)	and blinding of participants and outcome assessment
		Triple (Glycopyrronium): 64.6% Triple (Tiotropium): 64.3% Dual: 63.8%	
		FEV1 (mean, SD)	Directness
		Triple (Glycopyrronium): 1.52 (0.50) Triple (Tiotropium): 1.49 (0.47) Dual: 1.55 (0.48)	Directly applicable
		Interventions	
		Dual therapy	
		LABA+ICS: Salmeterol 50 ug + Fluticasone propionate 500 ug, twice daily	
		Triple therapy	
		Triple 1: Glycopyrronium 50 ug once daily Salmeterol 50 ug + Fluticasone propionate 500 ug, twice daily Triple 2: Tiotropium 18 ug, once daily	
		Salmeterol 50 ug + Fluticasone propionate 500 ug, twice daily	

Short Title	Title	Study characteristics	Risk of bias and directness
		Outcome measure(s) Serious adverse events Pneumonia Trough FEV1 Mortality Dropout due to SAEs Cardiac SAEs COPD SAEs	
Hoshino (2013)	Effects of tiotropium and salmeterol/fluticasone propionate on airway wall thickness in chronic obstructive pulmonary disease.	Study type Randomised controlled trial Study details Study location Japan Duration of follow-up 16 weeks Inclusion criteria Age	Random sequence generation Low risk of biasAllocation concealment Unclear risk of bias Insufficient information providedBlinding of
		 >40 Current or ex-smokers <i>History of 10+ pack-years of smoking</i> COPD diagnosis FEV1:FVC <0.7 FEV1 <70% Exclusion criteria Asthma diagnosis 	participants and personnel Unclear risk of bias Insufficient information provided Blinding of outcome assessment Unclear risk of bias Insufficient information

Short Title	Title	Study characteristics	Risk of bias and directness
		Clinically significant medical disorder other than COPD	provided
		Sample characteristics	Incomplete outcome
		Sample size	data
		68	Low risk of bias
		Split between study groups	
		Triple: 15 Dual: 16 Mono 1: 15 Mono 2: 14	Selective reporting
		%female	Low risk of bias
		Triple: 13% Dual: 20%	Other sources of bias
		Mean age (SD) <i>Triple: 73 (7) Dual: 67 (8)</i>	Low risk of bias
		FEV1 (mean, SD)	LOW HSK OF DIdS
		Triple: 1.38 (0.56) Dual: 1.25 (0.38)	Overall risk of bias
			Moderate
		Interventions	Insufficient information
		Dual therapy	provided for allocation
		LABA+ICS: Salmeterol 50 ug + Fluticasone propionate 250 ug, twice daily	concealment and
		Triple therapy	blinding of participants,
		Tiotropium 18 ug once daily	personnel and
		Salmeterol 50 ug + Fluticasone propionate 250 ug, twice daily	outcomes data
			Directness
		Outcome measure(s) SGRQ score	Directly applicable
		SONG SCOLE	
Lipson (2017)	FULFIL Trial: Once-Daily Triple Therapy	Data extraction (intervention)	Random sequence
,	for Patients with Chronic Obstructive	Associated studies (qualitative outcomes)	generation
	Pulmonary Disease.	Tabberer, M, Lomas, D A., Birk, R., et al. (2018) Once-Daily Triple	Unclear risk of bias
		Therapy in Patients with COPD: Patient-Reported Symptoms and	Insufficient information
		Quality of Life	provided

Short Title	Title	Study characteristics	Risk of bias and
			directness
		Study type	Allocation
		Randomised controlled trial	concealment
			Unclear risk of bias
		Study details	Insufficient information
		Study location	provided
		International	
		Study setting	Blinding of
		Multi-centre study	participants and
		Study dates	personnel
		January 2015 - April 2016	Low risk of bias
		Duration of follow-up	
		24 weeks (52 weeks for extension population)	Blinding of outcome
		Sources of funding	assessment
		GlaxoSmithKline	Unclear risk of bias
		FULFIL Trial	Insufficient information provided
		Inclusion criteria	
		Age	Incomplete outcome
		>40	data
		FEV1	Low risk of bias
		<50%	
		Recent moderate/severe exacerbation	Selective reporting
		Either minimum of 2 moderate exacerbations or at least 1 severe	Low risk of bias
		exacerbation in past 12 months	
		COPD Assessment Test score of at least 10	Other sources of bias
		Using monotherapy or dual therapy before screening	Low risk of bias
		Minimum 3 months before	
		Evolucion esiteria	Overall risk of bias
		Exclusion criteria	Moderate
		Asthma diagnosis	Insufficient information
		Recent exacerbation	provided for random

Short Title	Title	Study characteristics	Risk of bias and directness
		Severe exacerbation at time of screening	sequence generation,
		Pneumonia	allocation concealment
			and blinding of outcome
		Sample characteristics	assessment
		Sample size	
		1811 (extension population 430)	Directness
		Split between study groups	Directly applicable
		Triple: 911 Dual: 899 Extension population triple: 210 Extension	
		<i>population dual: 220</i> %female	
		Triple: 26% Dual: 26% Extension population triple: 25% Extension population dual: 26%	
		Mean age (SD)	
		Triple: 64.2 (8.56) Dual: 63.7 (8.71) Extension population triple: 63.7	
		(7.76) Extension population dual: 63.3 (8.43)	
		Current smoker (%)	
		Triple: 44% Dual: 44%	
		'	
		Interventions	
		Dual therapy	
		LABA+ICS: Budesonide 400 ug + formoterol 12 ug, twice daily	
		Triple therapy	
		Fluticasone furoate 100 ug + Umeclindinium 62.5 ug + Vilanterol 25 ug,	
		once daily	
		Outcome measure(s)	
		Moderate to severe exacerbations during follow-up	
		Decrease in SGRQ score >4 points	
		Serious adverse events	
		Pneumonia	
		TDI	

Short Title	Title	Study characteristics	Risk of bias and directness
		Trough FEV1	
Lipson (2018)	Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD.	Study type Randomised controlled trial Study details Study location International Study setting 1070 centres Study dates June 2014 - July 2017 Duration of follow-up 52 weeks Sources of funding GlaxoSmithKline Inclusion criteria Age >40 Current or ex-smokers FEV1 <50%	Random sequence generation Low risk of biasAllocation concealment
		Asthma diagnosis Requiring inhaled or oral corticosteroid therapy	Low risk of bias

Short Title	Title	Study characteristics	Risk of bias and directness
		Women who are pregnant or planning on becoming pregnant Inpatients	Overall risk of bias Low
		Sample characteristics Sample size 10335 Split between study groups Dual (LAMA+LABA): 2070 Dual (LABA+ICS): 4134 Triple: 4151 %female Dual (LAMA+LABA): 34% Dual (LABA+ICS): 34% Triple: 33% Mean age (SD) Dual (LAMA+LABA): 65.2 (8.3) Dual (LABA+ICS): 65.3 (8.3) Triple: 65.3 (8.2) Ex-smoker (%) Dual (LAMA+LABA): 65% Dual (LABA+ICS): 66% Triple: 65% Interventions Dual therapy LAMA+LABA: Umeclidinium 62.5 ug + Vilanterol trifenatate 25 ug LABA+ICS: Fluticasone furoate 100 ug + Vilanterol trifenatate 25 ug Triple therapy Fluticasone furoate 100 ug + Umeclidinium 62.5 ug + Vilanterol trifenatate 25 ug, once daily Outcome measure(s) Moderate to severe exacerbations during follow-up SGRQ score Serious adverse events Pneumonia Trough FEV1 Severe exacerbation Mortality	Directly applicable

Short Title	Title	Study characteristics	Risk of bias and directness
		Dropout due to SAEs	
Papi (2018)	Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIBUTE): a double-blind, parallel group, randomised controlled trial.	Study type Randomised controlled trial Study details Study location Italy Study setting Multi-centre study Study dates May 2015 - July 2017 Duration of follow-up 52 weeks Sources of funding Chiesi Farmaceutici Inclusion criteria Age >40 Current or ex-smokers COPD diagnosis FEV1:FVC <0.7	Random sequence generation Low risk of biasAllocation concealment Unclear risk of bias Insufficient information providedBlinding of participants and personnel Low risk of biasBlinding of outcome assessment Low risk of biasBlinding of outcome data

Short Title	Title	Study characteristics	Risk of bias and
			directness
		Exclusion criteria	Overall risk of bias
		Asthma diagnosis	Low
		Requiring inhaled or oral corticosteroid therapy	
		Using triple therapy	Directness
			Directly applicable
		Sample characteristics	
		Sample size	
		1532	
		Split between study groups	
		Dual: 768 Triple: 764	
		Loss to follow-up	
		Dual: 3 Triple: 4	
		%female	
		Dual: 28% Triple: 28%	
		Mean age (SD)	
		Dual: 64.5 (7.7) Triple: 64.4 (7.7)	
		Current smoker (%)	
		Dual: 43% Triple: 46%	
		Ex-smoker (%)	
		Dual: 57% Triple: 54%	
		FEV1 (mean, SD)	
		Dual: 1.07 (0.31) Triple: 1.07 (0.31)	
		Interventions	
		Dual therapy	
		LAMA+LABA: Indacaterol 85 ug + Glycopyrronium 43 ug, once per day	
		Triple therapy	
		Beclometasone diproprionate 87 ug + Formoterol fumarate 5 ug +	
		Glycopyrronium 9 ug, twice daily	

Short Title	Title	Study characteristics	Risk of bias and directness
		Outcome measure(s) Moderate to severe exacerbations during follow-up Decrease in SGRQ score >4 points Serious adverse events Pneumonia	
Siler (2015)	Efficacy and Safety of Umeclidinium Added to Fluticasone Furoate/Vilanterol in Chronic Obstructive Pulmonary Disease: Results of Two Randomized Studies.	Study type Randomised controlled trial Study details Study location Study 1: Argentina, Canada, Chile, Romania, USA Study 2: Czech Republic, Germany, Korea, USA Study setting Multi-centre study Duration of follow-up 12 weeks Sources of funding GlaxoSmithKline Inclusion criteria Age >40 Current or ex-smokers History of 10+ pack-years of smoking FEV1:FVC <0.7	Random sequence generation Low risk of biasAllocation concealment Unclear risk of bias Insufficient information providedBlinding of participants and personnel Low risk of biasBlinding of outcome assessment Unclear risk of biasBlinding of outcome assessment Unclear risk of biasBlinding of outcome assessment Unclear risk of bias Insufficient information providedBlinding of outcome assessment Unclear risk of bias Insufficient information providedIncomplete outcome data Low risk of bias

Short Title	Title	Study characteristics	Risk of bias and directness
		Exclusion criteria	Selective reporting
		Asthma diagnosis	Low risk of bias
		Hospitalisation for COPD or pneumonia within 12 weeks of study	
		Any respiratory disease other than asthma	Other sources of bias
			Unclear risk of bias
		Sample characteristics	Funding source had role
		Sample size	in editing of article
		Study 1: 619 Study 2: 620	
		 Split between study groups Study 1 Triple: 206 Study 1 Dual: 206 Study 2 Triple: 206 Study 2 Dual: 206 Loss to follow-up Study 1 Triple: 1 Study 1 Dual: 0 Study 2 Triple: 0 Study 2 Dual: 2 %female Study 1 Triple: 33% Study 1 Dual: 32% Study 2 Triple: 33% Study 2 Dual: 39% Mean age (SD) Study 1 Triple: 64.9 (8.72) Study 1 Dual: 64.7 (7.90) Study 2 Triple: 62.6 (8.12) Study 2 Dual: 62.6 (9.00) Current smoker (%) Study 1 Triple: 39% Study 1 Dual: 44% Study 2 Triple: 58% Study 2 Dual: 58% FEV1 (mean, SD) Study 1 Triple: 1.12 (0.45) Study 1 Dual: 1.16 (0.46) Study 2 Triple: 1.24 (0.44) Study 2 Dual: 1.29 (0.47) Interventions Dual therapy Both studies: LABA+ICS Fluticasone furoate 100 ug + Vilanterol 25 ug, once daily Triple therapy 	Overall risk of bias Moderate Insufficient information provided for allocation concealment and blinding of outcome assessment Directness Directly applicable
		Both studies: Umeclidinium 62.5 ug, once daily Fluticasone furoate 100 ug + Vilanterol, 25 ug, once daily	

Short Title	Title	Study characteristics	Risk of bias and directness
		Outcome measure(s) Moderate to severe exacerbations during follow-up SGRQ Responders SGRQ score Serious adverse events Pneumonia Trough FEV1 Mortality Dropout due to SAEs	
Siler (2016)	Efficacy and Safety of Umeclidinium Added to Fluticasone Propionate/Salmeterol in Patients with COPD: Results of Two Randomized, Double-Blind Studies.	Study type Randomised controlled trial Study details Study location Study 1: Canada, Germany, Korea, USA Study 2: Chile, Czech Republic, Korea, Poland, U Study setting Multi-centre study Duration of follow-up 12 weeks Sources of funding GlaxoSmithKline Inclusion criteria Age >40 Current or ex-smokers History of 10+ pack-years of smoking FEV1:FVC <0.7	Random sequence generation Low risk of biasAllocation concealment Unclear risk of bias Insufficient information providedBlinding of participants and personnel Low risk of biasBlinding of outcome assessment Unclear risk of bias Insufficient information provided

Short Title	Title	Study characteristics	Risk of bias and
			directness
		<70%	Incomplete outcome
		Clinical history of COPD as defined by ATS guidelines	data
			Low risk of bias
		Exclusion criteria	
		Asthma diagnosis	Selective reporting
		Hospitalisation for COPD or pneumonia within 12 weeks of study	Low risk of bias
		Any respiratory disease other than asthma	
			Other sources of bias
		Sample characteristics	Unclear risk of bias
		Sample size	Funding source had role
		Study 1: 617 Study 2: 608	in editing of article
		Split between study groups	
		Study 1 Triple: 204 Study 1 Dual: 205 Study 2 Triple: 203 Study 2 Dual:	Overall risk of bias
		201	Moderate
		Loss to follow-up	Insufficient information
		Study 1 Triple: 14 Study 1 Dual: 27 Study 2 Triple: 25 Study 2 Dual: 31	provided for allocation
		%female	concealment and
		Study 1 Triple: 35% Study 1 Dual: 36% Study 2 Triple: 31% Study 2	blinding of outcome
		Dual: 39%	assessment
		Mean age (SD)	
		Study 1 Triple: 62.7 (7.84) Study 1 Dual: 63.4 (8.27) Study 2 Triple:	Directness
		64.5 (8.31) Study 2 Dual: 65.7 (7.92)	Directly applicable
		Current smoker (%)	2
		Study 1 Triple: 50% Study 1 Dual: 57% Study 2 Triple: 36% Study 2	
		Dual: 38%	
		FEV1 (mean, SD)	
		Study 1 Triple: 1.31 (0.47) Study 1 Dual: 1.31 (0.46) Study 2 Triple:	
		1.15 (0.44) Study 2 Dual: 1.13 (0.45)	
		Interventions	
		Dual therapy	
		Both studies: LABA+ICS Fluticasone propionate 250 ug + Salmeterol 50	

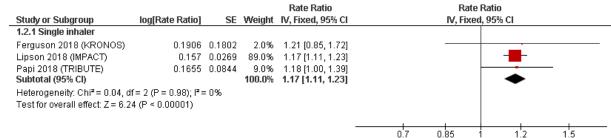
Short Title	Title	Study characteristics	Risk of bias and directness
		ug, twice daily Triple therapy Both studies: Umeclidinium 62.5 ug, once daily Fluticasone propionate 250 ug + Salmeterol 50 ug, twice daily Outcome measure(s) Moderate to severe exacerbations during follow-up SGRQ score Serious adverse events Pneumonia Trough FEV1 Mortality Dropout due to SAEs	
Singh (2016)	Single inhaler triple therapy versus inhaled corticosteroid plus long-acting beta2-agonist therapy for chronic obstructive pulmonary disease (TRILOGY): a double-blind, parallel group, randomised controlled trial.	Study type Randomised controlled trial Study details Study location International Study setting Multi-centre study Study dates March 2014 - January 2016 Duration of follow-up 52 weeks Sources of funding Chiesi Farmaceutici Inclusion criteria Age >40	Random sequence generation Low risk of biasAllocation concealment Unclear risk of bias Insufficient information providedBlinding of participants and personnel Low risk of biasBlinding of outcome assessment

Short Title	Title	Study characteristics	Risk of bias and
			directness
		COPD diagnosis	Low risk of bias
		FEV1:FVC <0.7	
		FEV1	Incomplete outcome
		<50%	data
		Recent moderate/severe exacerbation	Low risk of bias
		At least 1 in past 12 months	
		COPD Assessment Test score of at least 10	Selective reporting
		Using monotherapy or dual therapy before screening	Low risk of bias
		Minimum 2 months before	
		BDI score <10	Other sources of bias
			Unclear risk of bias
		Exclusion criteria	Funding source had role
		Asthma diagnosis	in editing of article
		Recent exacerbation	
		In 4 weeks before screening	Overall risk of bias
		Ocumula shamataristica	Low
		Sample characteristics	Dimetric
		Sample size	Directness
		1368 Colita batuara a tudu arguna	Directly applicable
		Split between study groups	
		<i>Triple: 687 Dual: 681</i> Loss to follow-up	
		Triple: 2 Dual: 5	
		%female	
		Triple: 26% Dual: 23%	
		Mean age (SD)	
		Triple: 63.3 (7.9) Dual: 63.8 (8.2)	
		Current smoker (%)	
		Triple: 47% Dual: 47%	
		Ex-smoker (%)	
		Triple: 53% Dual: 53%	

Short Title	Title	Study characteristics	Risk of bias and directness
		FEV1 (mean, SD) <i>Triple: 1.11 (0.32) Dual: 1.10 (0.33)</i> Interventions Dual therapy <i>LABA+ICS: Beclometasone dipropionate 100 ug + Formoterol fumarate 6</i> <i>ug, two puffs, twice per day</i> Triple therapy Beclometasone/Formoterol/Glycopyrronium	
		Glycopyrronium bromide 12.5 ug + Beclometasone diproprionate 100 ug + Formoterol fumarate 6 ug, two puffs, twice per day Outcome measure(s) SGRQ score Serious adverse events Pneumonia TDI	
Sousa (2016)	The effect of umeclidinium added to inhaled corticosteroid/long-acting beta2- agonist in patients with symptomatic COPD: a randomised, double-blind, parallel-group study.	Study type Randomised controlled trial Study details Study location Czech Republic, Germany, Greece and the Netherlands Study setting Multi-centre study Study dates September 2014 - March 2015	Random sequence generation Low risk of bias Allocation concealment Unclear risk of bias Insufficient information provided
		Duration of follow-up <i>12 weeks</i> Sources of funding	Blinding of participants and personnel

Short Title	Title	Study characteristics	Risk of bias and directness
		GlaxoSmithKline	Low risk of bias
		Inclusion criteria	Blinding of outcome
		Age	assessment
		>40	Unclear risk of bias
		Current or ex-smokers	Insufficient information
		FEV1:FVC <0.7	provided
		FEV1	
		<70%	Incomplete outcome
		Using monotherapy or dual therapy before screening	data
		Minimum 1 month before	Low risk of bias
		Dyspnoea score >2	
			Selective reporting
		Exclusion criteria	Low risk of bias
		Asthma diagnosis	
		Hospitalisation for COPD or pneumonia within 12 weeks of study	Other sources of bias
		Use of LTOT	Low risk of bias
		Prescribed for >12 hours per day	
		Previous lung transplantation or lung resection	Overall risk of bias
		Lung volume reduction within previous 12 months	Moderate
			Insufficient information
		Sample characteristics	provided for allocation
		Sample size	concealment and
		236	blinding of outcome
		Split between study groups	assessment
		Triple: 119 Dual: 117	
		Loss to follow-up	Directness
		Dual: 0 Triple: 1	Directly applicable
		%female	
		Dual: 36% Triple: 30%	
		Mean age (SD)	

Short Title	Title	Study characteristics	Risk of bias and directness
		Dual: 63.1 (7.9) Triple: 65.2 (7.5)	
		Current smoker (%) Dual: 61% Triple: 49%	
		FEV1 (mean, SD)	
		Triple: 1.33 (0.49) Dual: 1.37 (0.50)	
		Interventions	
		Dual therapy	
		Range of ICS/LABA (exact combinations not stated) at approved doses	
		Triple therapy	
		Umeclidinium 62.5 ug + Range of ICS/LABA (exact combinations not	
		stated) at approved doses	
		Outcome measure(s)	
		SGRQ score	
		Decrease in SGRQ score >4 points	
		Trough FEV1	


1 Appendix F – Forest plots

- 2 Forest plots are presented showing outcomes that favour triple therapy to the right of the
- 3 chart. Where lower numbers favoured triple therapy, such as for exacerbation rate, the effect
- 4 estimate was inverted to maintain consistency in the presentation of the forest plots.

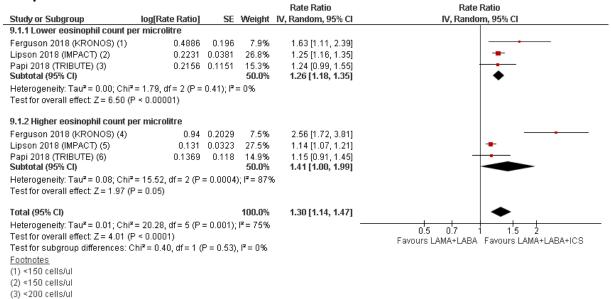
5 Triple therapy (LAMA+LABA+ICS) versus LAMA+LABA dual therapy

6 Rate of moderate to severe exacerbations per patient per year by:

7 Number of inhalers (multiple or single inhalers)

Favours LAMA+LABA Favours LAMA+LABA+ICS

8 Test for subgroup differences: Not applicable


9 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of inclusion criteria)*

Church and Carlo man		05		Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
1.2.1 Exacerbation in past '	12 months				
Lipson 2018 (IMPACT)	0.157	0.0269	89.0%	1.17 [1.11, 1.23]	
Papi 2018 (TRIBUTE)	0.1655	0.0844	9.0%	1.18 [1.00, 1.39]	
Subtotal (95% CI)			98.0%	1.17 [1.11, 1.23]	•
Heterogeneity: Chi ² = 0.01, d	df = 1 (P = 0.92); I ² =	:0%			
Test for overall effect: Z = 6.1	16 (P < 0.00001)				
1.2.2 No exacerbation in pa Ferguson 2018 (KRONOS) Subtotal (95% Cl)		cerbation 0.1802	2.0%	rt of inclusion criteria 1.21 [0.85, 1.72] 1.21 [0.85, 1.72]	
Heterogeneity: Not applicab	le				
Test for overall effect: Z = 1.0)6 (P = 0.29)				
			100.0%	1.17 [1.11, 1.23]	•
Total (95% CI)					
Total (95% CI) Heterogeneity: Chi ² = 0.04, d	if = 2 (P = 0.98); I² =	:0%			
, ,	· //	:0%			0.7 0.85 1 1.2 1.5 Favours LAMA+LABA Favours LAMA+LABA+ICS

1 Eosinophil count

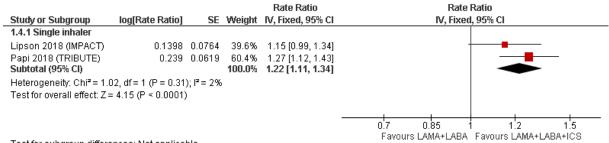
(4) >150 cells/ul (5) >150 cells/ul (6) >200 cells/ul

(2) <150 cells/ul
(3) >150 cells/ul
(4) >150 cells/ul

2

4

3 Sensitivity analysis removing the study using a 200ul eosinophil count cut off


				Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
9.2.1 Lower eosinophil count pe	er microlitre				
Ferguson 2018 (KRONOS) (1)	0.4886	0.196	13.2%	1.63 [1.11, 2.39]	
Lipson 2018 (IMPACT) (2)	0.2231	0.0381	36.7%	1.25 [1.16, 1.35]	
Subtotal (95% CI)			49.9%	1.33 [1.07, 1.66]	
Heterogeneity: Tau ² = 0.02; Chi ²	= 1.77, df = 1 (P =	0.18); I ^z :	= 43%		
Test for overall effect: Z = 2.53 (F	P = 0.01)				
9.2.2 Higher eosinophil count p	er microlitre				
Ferguson 2018 (KRONOS) (3)	0.94	0.2029	12.6%	2.56 [1.72, 3.81]	_
Lipson 2018 (IMPACT) (4)	0.131	0.0323	37.4%	1.14 [1.07, 1.21]	
Subtotal (95% CI)			50.1%	1.67 [0.76, 3.68]	
Heterogeneity: Tau ² = 0.31; Chi ²	= 15.50, df = 1 (P	< 0.0001); I² = 9 49	6	
Test for overall effect: Z = 1.26 (F	P = 0.21)				
Total (95% CI)			100.0%	1.37 [1.15, 1.63]	•
Heterogeneity: Tau ² = 0.02; Chi ²	= 20.04, df = 3 (P	= 0.0002); I² = 8 59	6	
Test for overall effect: Z = 3.59 (F			<i></i>		
Test for subgroup differences: C	· ·	P = 0.59)	. I² = 0%		Favours LAMA+LABA Favours LAMA+LABA+ICS
Footnotes		,			
(1) <150 cells/ul					

1 Previous medication

				Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
3.2.1 Prior LABA/LAMA med	ication				
Papi 2018 (TRIBUTE) (1)	0.1655	0.0844	9.0%	1.18 [1.00, 1.39]	
Subtotal (95% CI)			9.0%	1.18 [1.00, 1.39]	
Heterogeneity: Not applicable	э				
Test for overall effect: Z = 1.9					
	- (,				
3.2.2 Any prior COPD medica	ation				
Ferguson 2018 (KRONOS)	0.1906	0.1802	2.0%	1.21 [0.85, 1.72]	
Lipson 2018 (IMPACT)	0.157	0.0269	89.0%	1.17 [1.11, 1.23]	
Subtotal (95% Cl)			91.0%	1.17 [1.11, 1.23]	
Heterogeneity: Chi ² = 0.03, dt	f = 1 (P = 0.85);	0%			
Test for overall effect: Z = 5.9					
Total (95% CI)			100.0%	1.17 [1.11, 1.23]	•
Heterogeneity: Chi ^z = 0.04, dt	f = 2 (P = 0.98); I ² =	:0%			
Test for overall effect: Z = 6.2	4 (P < 0.00001)				0.7 0.85 1 1.2 1.5
Test for subgroup difference:	• •	1 (P = 0)	93), I ^z = 0	%	Favours LAMA+LABA Favours LAMA+LABA+ICS
Footnotes			,,		
(1) 2 week run-in period: Inda	e otorol (alve o pyrro	nium on	co nor do		
(i) z week run-in penou, inus	acateronylycopyrro	mum on	ce per da	у	

3 Rate of severe exacerbations per patient per year by:

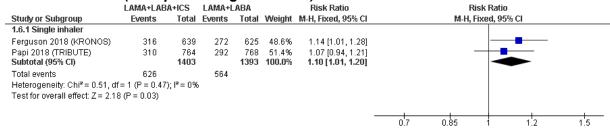
4 Number of inhalers (multiple or single)

5 Test for subgroup differences: Not applicable

6 Previous medication

Study or Subgroup	log[Rate Ratio]	SE Weight	Rate Ratio IV, Fixed, 95% Cl	Rate Ratio IV, Fixed, 95% Cl
3.4.1 Prior LABA/LAMA med	dication			í í
Papi 2018 (TRIBUTE) (1) Subtotal (95% CI)	0.239 0.		1.27 [1.12, 1.43] 1.27 [1.12, 1.43]	
Heterogeneity: Not applicab	le			
Test for overall effect: Z = 3.8	36 (P = 0.0001)			
3.4.2 Any prior COPD media	ation			
Lipson 2018 (IMPACT) Subtotal (95% CI)	0.1398 0.	.0764 39.6% 39.6 %		
Heterogeneity: Not applicab	le			
Test for overall effect: Z = 1.8	33 (P = 0.07)			
Total (95% CI)		100.0%	1.22 [1.11, 1.34]	•
Heterogeneity: Chi ² = 1.02, d	lf = 1 (P = 0.31); I ² =	2%	-	
Test for overall effect: Z = 4.1	I5 (P < 0.0001)			0.7 0.85 1 1.2 1.5 Favours LAMA+LABA Favours LAMA+LABA+ICS
Test for subgroup difference	es: Chi² = 1.02, df = 1	1 (P = 0.31), I ² =	= 1.7%	FAVOUIS DAWATDADA FAVOUIS DAWATDADATICS
Footnotes		. //		

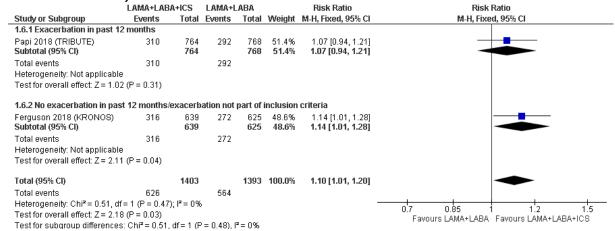
(1) 2 week run-in period: Indacaterol/glycopyrronium once per day


7

2

1 People with ≥ 4 units improvement in quality of life (St. George's Respiratory

2 Questionnaire responders) at 6 months by:


3 Number of inhalers (multiple or single inhalers)

4 Test for subgroup differences: Not applicable

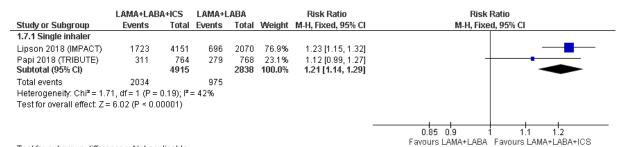
0.7 0.85 1 1.2 1.5 Favours LAMA+LABA Favours LAMA+LABA+ICS

5 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 6 *inclusion criteria)*

8 Previous medication

	LAMA+LAB	A+ICS	LAMA+L	.ABA		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.6.1 Prior LABA/LAMA medic	ation						
Papi 2018 (TRIBUTE) (1) Subtotal (95% CI)	310	764 764	292	768 768		1.07 [0.94, 1.21] 1.07 [0.94, 1.21]	
Total events	310		292				
Heterogeneity: Not applicable							
Test for overall effect: Z = 1.02	(P = 0.31)						
3.6.2 Any prior COPD medicat	tion						
Ferguson 2018 (KRONOS)	316	639	272	625	48.6%	1.14 [1.01, 1.28]	
Subtotal (95% Cl)		639		625	48.6%	1.14 [1.01, 1.28]	
Total events	316		272				
Heterogeneity: Not applicable							
Test for overall effect: Z = 2.11	(P = 0.04)						
Total (95% CI)		1403		1393	100.0%	1.10 [1.01, 1.20]	-
Total events	626		564				
Heterogeneity: Chi ² = 0.51, df =	= 1 (P = 0.47); I ² = 0%					0.7 0.85 1 1.2 1.5
Test for overall effect: Z = 2.18	(P = 0.03)						Favours LAMA+LABA Favours LAMA+LABA+ICS
Test for subgroup differences:	: Chi ² = 0.51,	df = 1 (F	= 0.48), I	²=0%			
Footnotes							
(1) 2 week run-in period: Indag	caterol/divcol	ovrroniur	n once pe	er dav			

(1) 2 week run-in period: Indacaterol/glycopyrronium once per day


9 10

7

1 People with \geq 4 units improvement in quality of life (St. George's Respiratory

2 Questionnaire responders) at 12 months by:

3 Number of inhalers (multiple or single inhalers)

4 Test for subgroup differences: Not applicable

5 Previous medication

	LAMA+LAB/	+ICS	LAMA+L	ABA		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.7.1 Prior LABA/LAMA me	dication						
Papi 2018 (TRIBUTE) (1) Subtotal (95% CI)	311	764 76 4	279	768 768	23.1% 23.1 %	1.12 [0.99, 1.27] 1.12 [0.99, 1.27]	
Total events Heterogeneity: Not applicab	311		279				
Test for overall effect: $Z = 1$.							
3.7.2 Any prior COPD medi	cation						
Lipson 2018 (IMPACT) Subtotal (95% CI)	1723	4151 4 151	696	2070 2070		1.23 [1.15, 1.32] 1.23 [1.15, 1.32]	
Total events Heterogeneity: Not applicab	1723 Je		696				
Test for overall effect: Z = 5.		01)					
Total (95% CI)		4915		2838	100.0%	1.21 [1.14, 1.29]	•
Total events	2034		975				
Heterogeneity: Chi ² = 1.71,	df = 1 (P = 0.1	9); l ² = 4	2%				0.85 0.9 1 1.1 1.2
Test for overall effect: Z = 6.	02 (P ≤ 0.000	01)					Favours LAMA+LABA Favours LAMA+LABA+ICS
Test for subgroup difference	es: Chi ² = 1.7	1, df = 1	(P = 0.19)	, I² = 41	.6%		
<u>Footnotes</u>							
(1) 2 week run-in period: Inc	dacaterol/dlvc	opyrroni	um once i	oer dav			

6

7 All-cause mortality by:

8 Number of inhalers (multiple or single inhalers)

	LABA/L/	AMA	LABA/LAM	AACS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.17.1 Multiple inhalers							
Aaron 2007 Subtotal (95% Cl)	6	148 148	6	145 145	12.6% 12.6 %	0.98 [0.32, 2.97] 0.98 [0.32, 2.97]	
Total events	6		6				
Heterogeneity: Not applicable	е						
Test for overall effect: Z = 0.0	4 (P = 0.97	")					
1.17.2 Single inhaler							
Ferguson 2018 (KRONOS)	3	625	6	639	12.3%	0.51 [0.13, 2.04]	
Lipson 2018 (IMPACT)	39	2070	50	4151	68.9%	1.56 [1.03, 2.37]	∎
Papi 2018 (TRIBUTE)	8	768	3	764	6.2%	2.65 [0.71, 9.96]	
Subtotal (95% Cl)		3463		5554	87.4%	1.49 [1.03, 2.17]	◆
Total events	50		59				
Heterogeneity: $Chi^2 = 3.09$, di Test for overall effect: $Z = 2.0$	•		= 35%				
restion overall ellect. Z = 2.0	3 (1 - 0.04	''					
Total (95% CI)		3611		5699	100.0%	1.43 [1.00, 2.04]	◆
Total events	56		65				
Heterogeneity: Chi ² = 3.59, dt	f = 3 (P = 0	.31); I ≧:	= 17%				0.1 0.2 0.5 1 2 5 1
Test for overall effect: Z = 1.9	7 (P = 0.05	5)					Favours LAMA+LABA Favours LAMA+LABA+ICS
Test for subgroup difference:	s: Chi ² = 0.	.50, df=	1 (P = 0.48)	. I ^z = 0%	5		TAYOUTS CAWA CADA FAYOUTS DRIVAT DADATICO

9

1 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 2 *inclusion criteria)*

	LAMA+L	ABA	LAMA+LABA	+ICS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.17.1 Exacerbation in past	12 months	;					i li
Aaron 2007	6	148	6	145	12.6%	0.98 [0.32, 2.97]	
Lipson 2018 (IMPACT)	39	2070	50	4151	68.9%	1.56 [1.03, 2.37]	
Papi 2018 (TRIBUTE) Subtotal (95% CI)	8	768 2986	3	764 5060	6.2% 87.7 %	2.65 [0.71, 9.96] 1.56 [1.07, 2.26]	
Total events Heterogeneity: Chi ² = 1.29, df Test for overall effect: Z = 2.34	•		59 = 0%				
1.17.2 No exacerbation in pa	ist 12 mon	iths/exa	acerbation no	t part o	f inclusio	n criteria	
Ferguson 2018 (KRONOS) Subtotal (95% CI)	3	625 625	6	639 639	12.3% 12.3 %	0.51 [0.13, 2.04] 0.51 [0.13, 2.04]	
Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.95)	6				
Total (95% CI)		3611		5699	100.0%	1.43 [1.00, 2.04]	-
Total events Heterogeneity: Chi ² = 3.59, df Test for overall effect: Z = 1.97 Test for subgroup differences	7 (P = 0.05)		²= 57.1	%		0.1 0.2 0.5 1 2 5 10 Favours LAMA+LABA Favours LAMA+LABA+ICS

4 Previous medication

	LAMA+L	ABA	LAMA+LAB	A+ICS		Risk Ratio			Risk R	atio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl			M-H, Fixed,	95% CI		
3.17.1 Prior LABA/LAMA me	dication											
Papi 2018 (TRIBUTE) (1) Subtotal (95% CI)	8	768 768	3	764 76 4	6.2% 6.2 %	2.65 [0.71, 9.96] 2.65 [0.71, 9.96]						_
Total events Heterogeneity: Not applicabl	8 e		3									
Test for overall effect: Z = 1.4	5 (P = 0.15	i)										
3.17.2 Any prior COPD medi	cation											
Aaron 2007	6	148	6	145	12.6%	0.98 [0.32, 2.97]						
Ferguson 2018 (KRONOS)	3	625	6	639	12.3%	0.51 [0.13, 2.04]	-		•			
Lipson 2018 (IMPACT) Subtotal (95% CI)	39	2070 2843	50	4151 4935	68.9% 93.8 %	1.56 [1.03, 2.37] 1.35 [0.93, 1.95]						
Total events	48		62									
Heterogeneity: Chi ² = 2.70, d	f= 2 (P = 0	.26); I ^z =	= 26%									
Test for overall effect: Z = 1.5	8 (P = 0.11)										
Total (95% CI)		3611		5699	100.0%	1.43 [1.00, 2.04]			-			
Total events	56		65									
Heterogeneity: Chi ² = 3.59, d	f= 3 (P = 0	.31); I ² =	:17%				0.1	0.2).5 1	<u> </u>	- E	1
Test for overall effect: Z = 1.9	7 (P = 0.05	5)					0.1			avours LAM/	U 1+1 ARA+10	
Test for subgroup difference	s: Chi ² = 0.	93, df =	1 (P = 0.33),	I² = 0%				r avours EAN		aroaro Dhim	1.0.000.10	0
<u>Footnotes</u>												
(1) 2 week run-in period: Ind-	acatorol/als	ve o nyrro	nium onco n	ordov								

(1) 2 week run-in period: Indacaterol/glycopyrronium once per day

5

1 Total serious adverse events by:

2 Number of inhalers (multiple or single inhalers)

	LABA/La	AMA	LABA/LAM	AACS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.18.1 Multiple inhalers							
Aaron 2007 Subtotal (95% Cl)	9	148 148	9	145 145	1.2% 1.2 %	0.98 [0.40, 2.40] 0.98 [0.40, 2.40]	
Total events Heterogeneity: Not applicable	9 e		9				
Test for overall effect: Z = 0.0	4 (P = 0.96	i)					
1.18.2 Single inhaler							
Ferguson 2018 (KRONOS)	68	625	55	639	7.0%	1.26 [0.90, 1.77]	
Lipson 2018 (IMPACT)	470	2070	895	4151	76.7%	1.05 [0.95, 1.16]	
Papi 2018 (TRIBUTE)	130	768	117	764	15.1%	1.11 [0.88, 1.39]	
Subtotal (95% CI)		3463		5554	98.8%	1.08 [0.99, 1.17]	◆
Total events	668		1067				
Heterogeneity: Chi² = 1.11, d Test for overall effect: Z = 1.6	•		= 0%				
Total (95% CI)		3611		5699	100.0%	1.07 [0.99, 1.17]	◆
Total events Heterogeneity: Chi ² = 1.15, d Test for overall effect: Z = 1.6 Test for subgroup difference:	3 (P = 0.10))) I ² = N%			0.5 0.7 1 1.5 2 Favours LAMA+LABA Favours LAMA+LABA+ICS

4 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 5 *inclusion criteria)*

	LAMA+L	ABA	LAMA+LAB	A+ICS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.18.1 Exacerbation in past	12 months	;					
Aaron 2007	9	148	9	145	1.2%	0.98 [0.40, 2.40]	
Lipson 2018 (IMPACT)	470	2070	895	4151	76.7%	1.05 [0.95, 1.16]	
Papi 2018 (TRIBUTE) Subtotal (95% CI)	130	768 2986	117	764 5060	15.1% 93.0 %	1.11 [0.88, 1.39] 1.06 [0.97, 1.16]	 ◆
Total events	609		1021				
Heterogeneity: Chi ² = 0.18, d Test for overall effect: Z = 1.2 1.18.2 No exacerbation in pa	8 (P = 0.20)		not nart	ofinclusi	on critoria	
•				•			
Ferguson 2018 (KRONOS) Subtotal (95% CI)	68	625 625	55	639 639	7.0% 7.0 %		
Total events	68		55				
Heterogeneity: Not applicable	е						
Test for overall effect: Z = 1.3	6 (P = 0.17)					
Total (95% CI)		3611		5699	100.0%	1.07 [0.99, 1.17]	◆
Total events	677		1076				
Heterogeneity: Chi ² = 1.15, d	f= 3 (P = 0	.77); l² =	= 0%				
Test for overall effect: Z = 1.6	•						0.5 0.7 1 1.5 2
Test for subgroup difference		·	1/D = 0.22	IZ = 0.0X			Favours LAMA+LABA Favours LAMA+LABA+ICS

6

1 Previous medication

	LAMA+L		LAMA+LAB			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.18.1 Prior LABA/LAMA me	dication						
Papi 2018 (TRIBUTE) (1)	130	768	117	764	15.1%	1.11 [0.88, 1.39]	
Subtotal (95% Cl)		768		764	15.1%	1.11 [0.88, 1.39]	
Total events	130		117				
Heterogeneity: Not applicable	е						
Test for overall effect: Z = 0.8	6 (P = 0.39)					
3.18.2 Any prior COPD medi	cation						
Aaron 2007	9	148	9	145	1.2%	0.98 [0.40, 2.40]	
Ferguson 2018 (KRONOS)	68	625	55	639	7.0%	1.26 [0.90, 1.77]	
Lipson 2018 (IMPACT)	470	2070	895	4151	76.7%	1.05 [0.95, 1.16]	
Subtotal (95% Cl)		2843		4935	84.9%	1.07 [0.97, 1.17]	◆
Total events	547		959				
Heterogeneity: Chi ² = 1.07, d	f= 2 (P = 0	.59); I² =	= 0%				
Test for overall effect: Z = 1.4	0 (P = 0.16)					
Total (95% CI)		3611		5699	100.0%	1.07 [0.99, 1.17]	◆
Total events	677		1076				
Heterogeneity: Chi ² = 1.15, d	f= 3 (P = 0	.77); l² =	= 0%				0.5 0.7 1 1.5 2
Test for overall effect: Z = 1.6	3 (P = 0.10)					Favours LAMA+LABA Favours LAMA+LABA+ICS
Test for subgroup difference:	s: Chi ² = 0.	07, df=	1 (P = 0.79),	I² = 0%			
<u>Footnotes</u>							
(1) 2 week run-in period: Inda	ac aterol (d)	convrro	nium once n	ordov			

3 Dropout due to adverse events by:

2

5

4 Number of inhalers (multiple or single inhaler)

	LAMA+L	ABA	LAMA+LAB	A+ICS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.21.1 Multiple inhalers							
Aaron 2007	6	148	8	145	3.4%	0.73 [0.26, 2.07]	
Subtotal (95% Cl)		148		145	3.4%	0.73 [0.26, 2.07]	
Total events	6		8				
Heterogeneity: Not applicabl	е						
Test for overall effect: Z = 0.5	8 (P = 0.56	i)					
1.21.2 Single inhaler							
Ferguson 2018 (KRONOS)	30	625	30	639	12.3%	1.02 [0.62, 1.68]	_
Lipson 2018 (IMPACT)	186	2070	249	4151	68.9%	1.50 [1.25, 1.80]	-∎ -
Papi 2018 (TRIBUTE)	47	768	37	764	15.4%	1.26 [0.83, 1.92]	
Subtotal (95% CI)		3463		5554	96.6%	1.40 [1.19, 1.64]	•
Total events	263		316				
Heterogeneity: Chi ² = 2.31, d	f= 2 (P = 0	l.31); I²÷	= 14%				
Test for overall effect: Z = 4.1	7 (P < 0.00	01)					
Total (95% CI)		3611		5699	100.0%	1.38 [1.18, 1.61]	•
Total events	269		324				
Heterogeneity: Chi ² = 3.79, d	f= 3 (P = 0	.28); I ²÷	= 21%				
Test for overall effect: Z = 4.0	2 (P < 0.00	01)					0.2 0.5 1 2 Favours LAMA+LABA Favours LAMA+LABA
Test for subgroup difference	s: Chi² = 1.	46, df =	1 (P = 0.23),	I ² = 31.5	%		

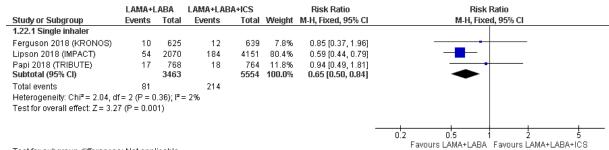
Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence reviews for inhaled triple therapy DRAFT (February 2019)

1 Previous exacerbation (occurrence or no exacerbations in past 12 months as part of

2 inclusion criteria)

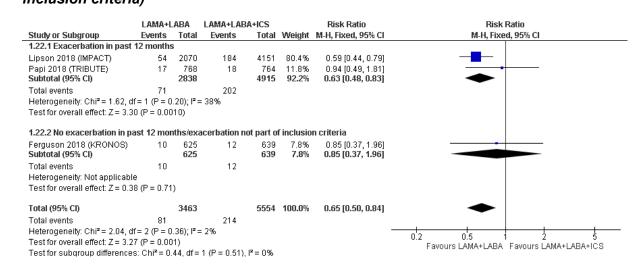
	LAMA+L	ABA	LAMA+LAB/	A+ICS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.21.1 Exacerbation in past 1	2 months	;					
Aaron 2007	6	148	8	145	3.4%	0.73 [0.26, 2.07]	
Lipson 2018 (IMPACT)	186	2070	249	4151	68.9%	1.50 [1.25, 1.80]	
Papi 2018 (TRIBUTE)	47	768	37	764	15.4%	1.26 [0.83, 1.92]	
Subtotal (95% CI)		2986		5060	87.7%	1.43 [1.21, 1.68]	◆
Total events	239		294				
Heterogeneity: Chi2 = 2.18, df	= 2 (P = 0.	.34); l² =	= 8%				
Test for overall effect: Z = 4.23	(P < 0.00	01)					
1.21.2 No exacerbation in pa Ferguson 2018 (KRONOS) Subtotal (95% CI)	st 12 mon 30	ths/exa 625 625	acerbations r 30	ot part 639 639	of inclusi 12.3% 12.3%	on criteria 1.02 (0.62, 1.68) 1.02 (0.62, 1.68)	
Total events Heterogeneity: Not applicable Test for overall effect: Z = 0.09)	30				
Total (95% CI)		3611		5699	100.0%	1.38 [1.18, 1.61]	◆
Total events	269		324				
Heterogeneity: Chi ² = 3.79, df	= 3 (P = 0.	.28); I ² =	= 21%				
Test for overall effect: Z = 4.02	(P < 0.00	01)					U.2 U.5 I Z 5 Favours LAMA+LABA Favours LAMA+LABA+ICS
Test for subgroup differences	: Chi² = 1.:	58, df =	1 (P = 0.21),	I ² = 36.6	%		Lavours EVMU, EVPU, Lavours EVMU, EVPU, 100

4 Previous medication

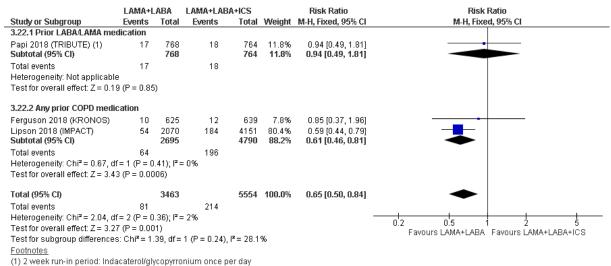

3

	LAMA+L	.ABA	LAMA+LAB	A+ICS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.21.1 Prior LABA/LAMA me	dication						
Papi 2018 (TRIBUTE) (1)	47	768	37	764	15.4%	1.26 [0.83, 1.92]	
Subtotal (95% Cl)		768		764	15.4%	1.26 [0.83, 1.92]	
Total events	47		37				
Heterogeneity: Not applicabl	е						
Test for overall effect: Z = 1.0	9 (P = 0.27	")					
3.21.2 Any prior COPD medi	cation						
Aaron 2007	6	148	8	145	3.4%	0.73 [0.26, 2.07]	
Ferguson 2018 (KRONOS)	30	625	30	639	12.3%	1.02 [0.62, 1.68]	
Lipson 2018 (IMPACT)	186	2070	249	4151	68.9%	1.50 [1.25, 1.80]	-∎ -
Subtotal (95% CI)		2843		4935	84.6%	1.40 [1.18, 1.65]	◆
Total events	222		287				
Heterogeneity: Chi ² = 3.58, d	f= 2 (P = 0	l.17); l² =	= 44%				
Test for overall effect: Z = 3.9	0 (P < 0.00	01)					
Total (95% CI)		3611		5699	100.0%	1.38 [1.18, 1.61]	•
Total events	269		324				
Heterogeneity: Chi ² = 3.79, d	f= 3 (P = 0	.28); I ² =	= 21%				
Test for overall effect: Z = 4.0	2 (P < 0.00	01)					Favours LAMA+LABA Favours LAMA+LABA+ICS
Test for subgroup difference	s: Chi = 0.	19, df =	1 (P = 0.66),	I² = 0%			
<u>Footnotes</u>							
(1) 2 week run-in period: Ind	acaterol/gly	/copyrro	nium once p	er day			

6 Pneumonia by:


5

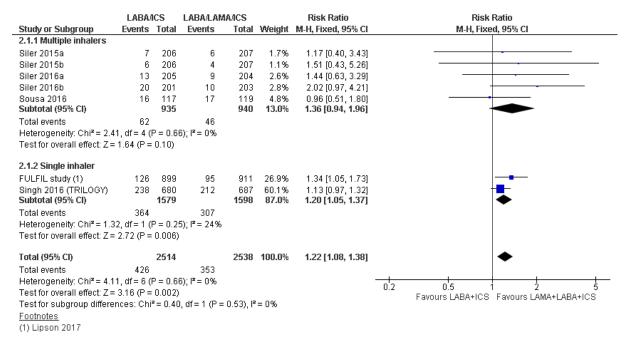
7 Number of inhalers (multiple or single inhaler)


8 Test for subgroup differences: Not applicable

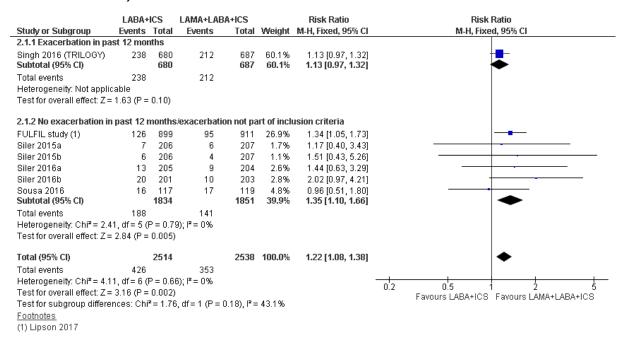
1 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 2 *inclusion criteria)*

4 Previous medication

3



5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
	86


1 Triple therapy (LAMA+LABA+ICS) versus LABA+ICS dual therapy

2 Moderate to severe exacerbations by:

3 Number of inhalers (multiple or single inhalers)

5 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 6 *inclusion criteria)*

7

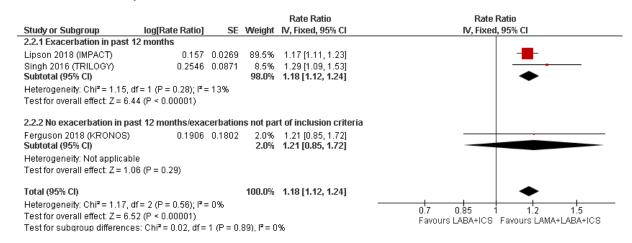
4

1 Prior medication

2

8

	LABA+	ICS	LAMA+LAB	A+ICS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
4.1.1 Prior LABA/ICS medi	cation						
Siler 2015a (1)	7	206	6	207	1.7%	1.17 [0.40, 3.43]	
Siler 2015b (2)	6	206	4	207	1.1%	1.51 [0.43, 5.26]	· · · · · · · · · · · · · · · · · · ·
Siler 2016a (3)	13	205	9	204	2.6%	1.44 [0.63, 3.29]	
Siler 2016b (4)	20	201	10	203	2.8%	2.02 [0.97, 4.21]	
Singh 2016 (TRILOGY) (5)	238	680	212	687	60.1%	1.13 [0.97, 1.32]	+=-
Sousa 2016	16	117	17	119	4.8%	0.96 [0.51, 1.80]	
Subtotal (95% CI)		1615		1627	73.1%	1.17 [1.02, 1.35]	◆
Total events	300		258				
Heterogeneity: Chi ² = 3.08,	df = 5 (P =	0.69);1	²=0%				
Test for overall effect: Z = 2	.23 (P = 0.0	03)					
4.1.2 Any prior COPD medi	ication						
FULFIL study (6)	126	899	95	911	26.9%	1.34 [1.05, 1.73]	
Subtotal (95% CI)		899		911	26.9%	1.34 [1.05, 1.73]	◆
Total events	126		95				
Heterogeneity: Not applical	ole						
Test for overall effect: Z = 2	.32 (P = 0.0	02)					
Total (95% CI)		2514		2538	100.0%	1.22 [1.08, 1.38]	◆
Total events	426		353				
Heterogeneity: Chi ² = 4.11,	df = 6 (P =	0.66):1	²=0%				
Test for overall effect: Z = 3							
Test for subaroup differenc			f = 1 (P = 0.36	5), I ^z = 09	6		Favours LABA+ICS Favours LAMA+LABA+ICS
Footnotes		•		~			
(1) 4 week run-in period: sa	almeterol/fl	luticaso	ine				
(2) 4 week run-in period: sa							
(3) 4 week run-in period: sa							
· · · ·	almeterol/fl	luticasc	irie				
 (3) 4 week run-in period: sa (4) 4 week run-in period: sa (5) 2 week run-in period: Ba 				perdav			


3 Rate of moderate to severe exacerbations per patient per year by:

4 Number of inhalers (multiple or single inhalers)

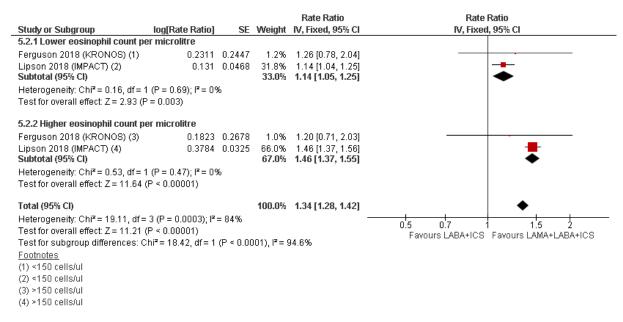
				Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
2.2.1 Single inhaler					
Ferguson 2018 (KRONOS)	0.1906	0.1802	2.0%	1.21 [0.85, 1.72]	
Lipson 2018 (IMPACT)	0.157	0.0269	89.5%	1.17 [1.11, 1.23]	- ∎ -
Singh 2016 (TRILOGY)	0.2546	0.0871	8.5%	1.29 [1.09, 1.53]	
Subtotal (95% Cl)			100.0%	1.18 [1.12, 1.24]	•
Heterogeneity: Chi ² = 1.17, d	f = 2 (P = 0.56); P =	= 0%			
Test for overall effect: Z = 6.5	2 (P < 0.00001)				
					Favours LABA/ICS Favours LABA/LAMA/ICS

5 Test for subgroup differences: Not applicable

6 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 7 *inclusion criteria)*

88

1 Prior medication

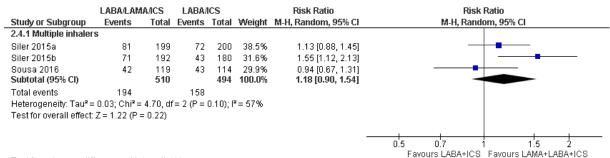

				Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
4.2.1 Prior LABA/ICS medicat	tion				
Singh 2016 (TRILOGY) (1) Subtotal (95% CI)	0.2546	0.0871	8.5% 8.5 %	1.29 [1.09, 1.53] 1.29 [1.09, 1.53]	
Heterogeneity: Not applicable					
Test for overall effect: Z = 2.92	(P = 0.003)				
4.2.2 Any prior COPD medica	tion				
Ferguson 2018 (KRONOS)	0.1906	0.1802	2.0%	1.21 [0.85, 1.72]	
Lipson 2018 (IMPACT) Subtotal (95% CI)	0.157	0.0269		1.17 [1.11, 1.23] 1.17 [1.11, 1.23]	
Heterogeneity: Chi² = 0.03, df	= 1 (P = 0.85); l ² =	:0%			
Test for overall effect: Z = 5.93	(P < 0.00001)				
Total (95% CI)			100.0%	1.18 [1.12, 1.24]	•
Heterogeneity: Chi ² = 1.17, df	= 2 (P = 0.56); l ² =	:0%			07 0.85 1 12 15
Test for overall effect: Z = 6.52	(P < 0.00001)				U.7 U.85 1 1.2 1.5 Favours LABA+ICS Favours LAMA+LABA+ICS
Test for subgroup differences	: Chi ² = 1.13, df =	1 (P = 0.	29), I ^z = 1	1.6%	
<u>Footnotes</u>					
(1) 2 week run-in period: Becl	ometasone/formo	oterol twi	ce per da	y	

3 Eosinophil count

2

				Rate Ratio	Rate Ratio
Study or Subgroup	log[Rate Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
5.1.1 Lower eosinophil count pe	er microlitre				
Ferguson 2018 (KRONOS) (1)	0.2311	0.2447	6.9%	1.26 [0.78, 2.04]	
Lipson 2018 (IMPACT) (2)	0.131	0.0468	27.3%	1.14 [1.04, 1.25]	
Singh 2016 (TRILOGY) (3) Subtotal (95% CI)	0.3228	0.1647	11.9% 46.1 %	1.38 [1.00, 1.91] 1.16 [1.06, 1.26]	•
Heterogeneity: Tau ² = 0.00; Chi ² :	= 1.37, df = 2 (P =	0.50); l ² :	= 0%		
Test for overall effect: Z = 3.35 (P	= 0.0008)				
5.1.2 Higher eosinophil count pe	er microlitre				
Ferguson 2018 (KRONOS) (4)	0.1823	0.2678	6.0%	1.20 [0.71, 2.03]	
Lipson 2018 (IMPACT) (5)	0.3784	0.0325	29.0%	1.46 [1.37, 1.56]	
Singh 2016 (TRILOGY) (6) Subtotal (95% CI)	0.2215	0.1039	18.9% 53.9 %	1.25 [1.02, 1.53] 1.40 [1.26, 1.56]	→
Heterogeneity: Tau² = 0.00; Chi² Test for overall effect: Z = 6.32 (P		0.28); I²:	= 21%		
Total (95% CI)			100.0%	1.29 [1.12, 1.48]	•
Heterogeneity: Tau ² = 0.02; Chi ² :	= 19.63, df = 5 (P :	= 0.001);	l² = 75%	-	
Test for overall effect: Z = 3.47 (P	= 0.0005)				Favours LABA+ICS Favours LAMA+LABA+ICS
Test for subgroup differences: C	hi² = 7.47, df = 1 (F	P = 0.008	õ), I≅ = 86.	6%	
<u>Footnotes</u>					
(1) <150 cells/ul					
(2) ≺150 cells/ul					
(3) <200 cells/ul					
(4) >150 cells/ul					
(5) >150 cells/ul					
(6) <200 cells/ul					

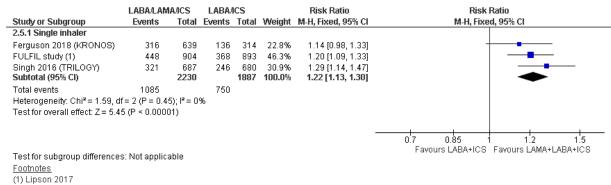
1 Sensitivity analysis removing the study using a 200ul eosinophil count cut off



2

3 People with \ge 4 units improvement in quality of life (St. George's Respiratory

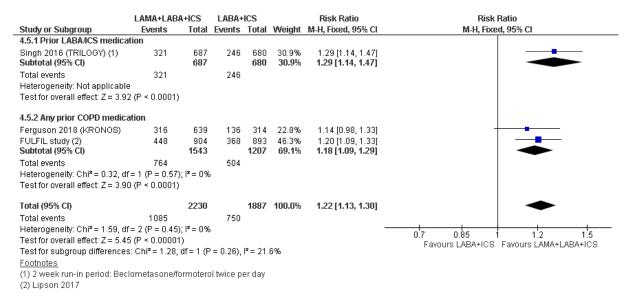
4 Questionnaire responders) at 3 months by:


5 Number of inhalers (multiple or single inhalers)

6 Test for subgroup differences: Not applicable

7 People with \ge 4 units improvement in quality of life (St. George's Respiratory 8 Questionnaire responders) at 6 months by:

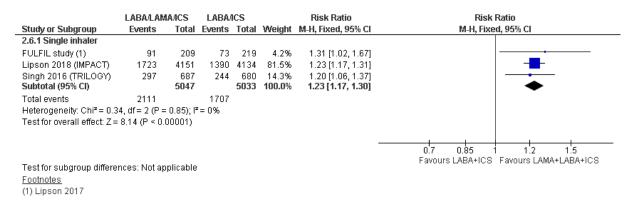
9 Number of inhalers (multiple or single inhalers)



1 Exacerbations (exacerbation or no exacerbation in past 12 months)

	LAMA+LAB	A+ICS	LABA+	ICS		Risk Ratio	Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl		
2.5.1 Exacerbation in past 12	2 months								
Singh 2016 (TRILOGY) Subtotal (95% CI)	321	687 687	246	680 680	30.9% 30.9 %	1.29 [1.14, 1.47] 1.29 [1.14, 1.47]			
Total events	321		246						
Heterogeneity: Not applicable	•								
Test for overall effect: Z = 3.92	2 (P < 0.0001)								
2.5.2 No exacerbation in pas	t 12 months/	exacerb	ation not	part o	f inclusio	n criteria			
Ferguson 2018 (KRONOS)	316	639	136	314	22.8%	1.14 [0.98, 1.33]			
FULFIL study (1)	448	904	368	893	46.3%	1.20 [1.09, 1.33]			
Subtotal (95% CI)		1543		1207	69.1%	1.18 [1.09, 1.29]			
Total events	764		504						
Heterogeneity: Chi ² = 0.32, df	= 1 (P = 0.57)); I ^z = 0%)						
Test for overall effect: Z = 3.90) (P < 0.0001)								
Total (95% CI)		2230		1887	100.0%	1.22 [1.13, 1.30]	•		
Total events	1085		750						
Heterogeneity: Chi ² = 1.59, df	= 2 (P = 0.45)); I ^z = 0%)			-	0.7 0.85 1 1.2 1.5		
Test for overall effect: Z = 5.45	5 (P < 0.00001	I)					Favours LABA+ICS Favours LAMA+LABA+IC		
Test for subgroup differences	: Chi ² = 1.28,	df = 1 (F	9 = 0.26),	I ² = 21.	6%				
Footnotes									
(1) Lipson 2017									

3 Prior medication


2

4

5 People with ≥ 4 units improvement in quality of life (St. George's Respiratory 6 Questionnaire responders) at 12 months by:

7 Number of inhalers (multiple or single inhalers)

8

1 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 2 *inclusion criteria)*

			LABA+			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
2.6.1 Exacerbation in pa	ist 12 moi	nths					
Lipson 2018 (IMPACT)	1723	4151	1390	4134	81.5%	1.23 [1.17, 1.31]	- ∎ -
Singh 2016 (TRILOGY)	297	687	244	680	14.3%	1.20 [1.06, 1.37]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)		4838		4814	95.8%	1.23 [1.17, 1.30]	•
Total events	2020		1634				
Heterogeneity: Chi ² = 0.1	1, df = 1 (P = 0.74	4); I ² = 09	6			
Test for overall effect: Z =	7.87 (P <	0.0000)1)				
2.6.2 No exacerbation in	i past 12 i	months	exacerl	bation I	not part o	f inclusion criteria	
FULFIL study (1)	91	209	73	219	4.2%	1.31 [1.02, 1.67]	
Subtotal (95% CI)		209		219	4.2%	1.31 [1.02, 1.67]	
Total events	91		73				
Heterogeneity: Not appli	cable						
Test for overall effect: Z =	: 2.16 (P =	0.03)					
Total (95% CI)		5047		5033	100.0%	1.23 [1.17, 1.30]	•
Total events	2111		1707				
Heterogeneity: Chi ² = 0.3	4. df = 2 (P = 0.85	5); I ² = 09	6			
Test for overall effect: Z =							0.7 0.85 1 1.2 1.5
Test for subgroup differe				P = 0.6	4), ² = 0%	1	Favours LABA+ICS Favours LAMA+LABA+ICS
Footnotes							
(1) Lipson 2017							
(1) Elboon 2011							

3

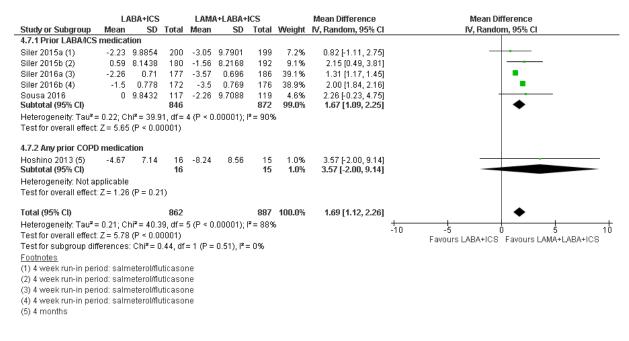
4 Prior medication

	LAMA+LABA		LABA+			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
4.6.1 Prior LABAACS medica	ation						
Singh 2016 (TRILOGY) (1) Subtotal (95% Cl)	297	687 687	244	680 680	14.3% 14.3 %	1.20 [1.06, 1.37] 1.20 [1.06, 1.37]	
Total events	297		244				
Heterogeneity: Not applicabl	е						
Test for overall effect: Z = 2.7							
4.6.2 Any prior COPD medic	ation						
FULFIL study (2)	91	209	73	219	4.2%	1.31 [1.02, 1.67]	
Lipson 2018 (IMPACT)	1723	4151	1390	4134	81.5%	1.23 [1.17, 1.31]	- ∎ -
Subtotal (95% Cl)		4360		4353	85.7%	1.24 [1.17, 1.31]	•
Total events	1814		1463				
Heterogeneity: Chi ² = 0.20, d	f=1 (P=0.66	i); I² = 09	Хо				
Test for overall effect: Z = 7.6	7 (P < 0.0000	1)					
Total (95% CI)		5047		5033	100.0%	1.23 [1.17, 1.30]	•
Total events	2111		1707				
Heterogeneity: Chi ² = 0.34, d	lf = 2 (P = 0.85	i); I² = 09	Хо				0.7 0.85 1 1.2 1.5
Test for overall effect: Z = 8.1	4 (P ≤ 0.0000	1)					Favours LABA+ICS Favours LAMA+LABA+ICS
Test for subgroup difference	s: Chi ² = 0.14,	df = 1 (P = 0.71)	2 = 09	6		
Footnotes							
(1) 2 wook run in pariod: Bac	lamata a na M	io recoto r	ol truico r	or dou			

(1) 2 week run-in period: Beclometasone/formoterol twice per day (2) Lipson 2017

1 Change from baseline in St. George's Respiratory Questionnaire (SGRQ), total score at 3 2 months by:

3 Number of inhalers (multiple or single inhalers)


	L	ABAACS		LAB	ламал	cs		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
2.7.1 Multiple inhale	rs -								
Hoshino 2013 (1)	-4.67	7.14	16	-8.24	8.56	15	1.0%	3.57 [-2.00, 9.14]	
Siler 2015a	-2.23	9.8854	200	-3.05	9.7901	199	7.2%	0.82 [-1.11, 2.75]	- +
Siler 2015b	0.59	8.1438	180	-1.56	8.2168	192	9.1%	2.15 [0.49, 3.81]	— • — ·
Siler 2016a	-2.26	0.71	177	-3.57	0.696	186	39.1%	1.31 [1.17, 1.45]	
Siler 2016b	-1.5	0.778	172	-3.5	0.769	176	38.9%	2.00 [1.84, 2.16]	
Sousa 2016	0	9.8432	117	-2.26	9.7088	119	4.6%	2.26 [-0.23, 4.75]	
Subtotal (95% CI)			862			887	100.0%	1.69 [1.12, 2.26]	◆
Heterogeneity: Tau ² =	= 0.21; C	hi² = 40.3	89, df =	5 (P < 0	.00001);	l ² = 889	%		
Test for overall effect	: Z = 5.78	8 (P < 0.0	0001)						
								-	-10 -5 0 5 10
									Favours LABA+ICS Favours LAMA+LABA+ICS
Test for subgroup dif	ferences	: Not app	licable						
<u>Footnotes</u>									
(1) 4 months									

4

6

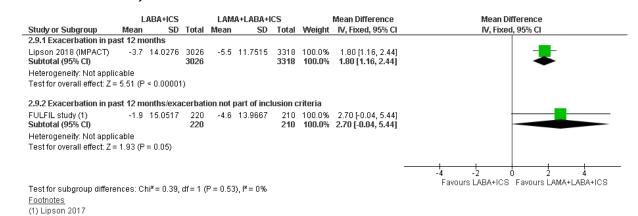
10

5 Prior medication

7 Change from baseline in St. George's Respiratory Questionnaire (SGRQ), total score at 6 8 months by:

9 Number of inhalers (multiple or single inhalers)

	L	ABA/ICS		LAB	АЛАМАЛ	s		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
2.8.1 Single inhaler									
Ferguson 2018 (KRONOS)	-7.1	10.5302	298	-7.5	11.7123	621	47.0%	0.40 [-1.11, 1.91]	— —
FULFIL study (1) Subtotal (95% CI)	-4.3	13.7496	899 1197	-6.6	12.3033	911 1532	53.0% 100.0%	2.30 [1.10, 3.50] 1.41 [-0.45, 3.27]	
Heterogeneity: Tau ² = 1.32; C Test for overall effect: Z = 1.4 Test for subgroup difference:	8 (P = 0.1	14)		-,					-4 -2 0 2 4 Favours LABA+ICS Favours LAMA+LABA+ICS
Footnotes (1) Lipson 2017	5. 146t ap	pircubic							


93

1 Change from baseline in St. George's Respiratory Questionnaire (SGRQ), total score at 2 12 months by:

3 Number of inhalers (multiple or single inhalers)

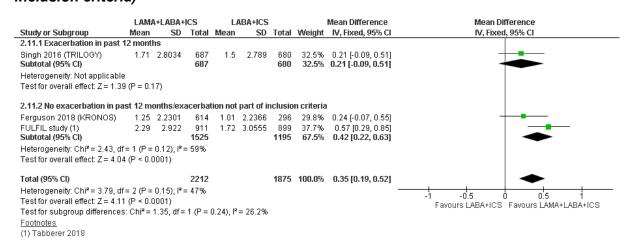
	L	ABAACS		LAB	АЛАМАЛО	s		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
2.9.1 Single inhaler									
FULFIL study (1)	-1.9	15.0517	220	-4.6	13.9667	210	5.2%	2.70 [-0.04, 5.44]	
Lipson 2018 (IMPACT) Subtotal (95% CI)	-3.7	14.0276	3026 3246	-5.5	11.7515	3318 3528	94.8% 100.0%	1.80 [1.16, 2.44] 1.85 [1.22, 2.47]	
Heterogeneity: Chi ² = 0.3 Test for overall effect: Z =		· ,		%					
Test for subgroup differe	,								-4 -2 0 2 4 Favours LABA+ICS Favours LAMA+LABA+ICS

5 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 6 *inclusion criteria)*

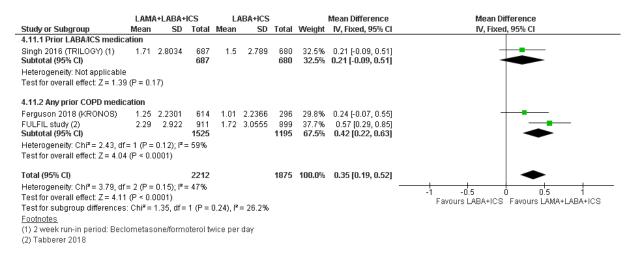
7

4

8 Transition Dyspnoea Index (TDI) at 6 months by:


9 Number of inhalers (multiple or single inhalers)

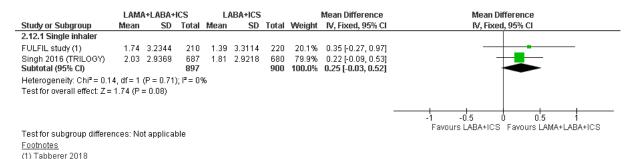
	LAM	A+LABA+	ICS	Li	ABA+ICS			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
2.11.1 Single inhaler									
Ferguson 2018 (KRONOS)	1.25	2.2301	614	1.01	2.2366	296	29.8%	0.24 [-0.07, 0.55]	+- -
FULFIL study (1)	2.29	2.922	911	1.72	3.0555	899	37.7%	0.57 [0.29, 0.85]	
Singh 2016 (TRILOGY) Subtotal (95% CI)	1.71	2.8034	687 2212	1.5	2.789	680 1875	32.5% 100.0 %	0.21 [-0.09, 0.51] 0.35 [0.19, 0.52]	
Heterogeneity: Chi² = 3,79, d	f= 2 (P =	0.15); P	= 47%						
Test for overall effect: Z = 4.1	1 (P < 0.0	0001)							
									-1 -0.5 0 0.5 1
Test for subgroup difference Footnotes	s: Not ap	plicable							Favours LABA+ICS Favours LAMA+LABA+ICS


10

(1) Tabberer 2018

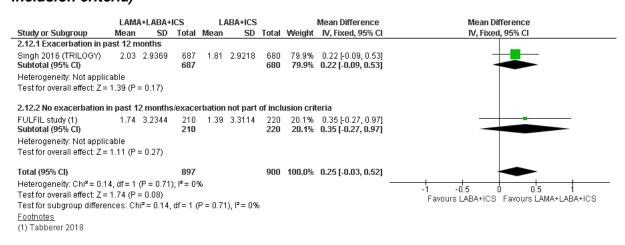
1 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 2 *inclusion criteria)*

4 Prior medication

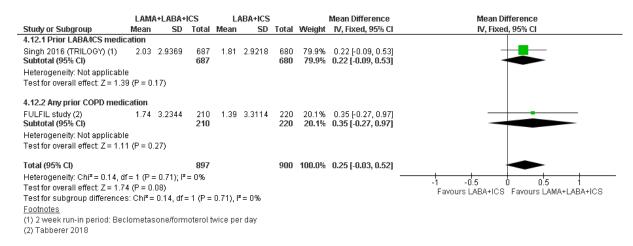


5

3


6 Transition Dyspnoea Index (TDI) at 12 months by:

7 Number of inhalers (multiple or single inhalers)



8

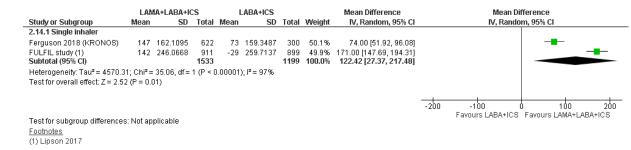
1 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 2 *inclusion criteria)*

4 Prior medication

5

3

6 Change from baseline in FEV1 at 3 months by:

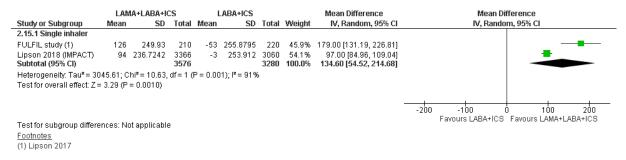

7 Number of inhalers (multiple or single inhalers)

	LAM	A+LABA+IC	s	L	ABA+ICS			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
2.13.1 Multiple inhalers									
Cazzola 2007	186	63.0949	29	140	51.9919	26	8.7%	46.00 [15.56, 76.44]	
Frith 2015 (GLISTEN) (1)	88.43	20.44	257	-22.72	21.12	129	22.6%	111.15 [106.73, 115.57]	+
Frith 2015 (GLISTEN) (2)	86.76	19.78	258	-22.72	21.12	128	22.6%	109.48 [105.10, 113.86]	• •
Siler 2015a	103	153.6066	195	20	151.6245	190	8.7%	83.00 [52.51, 113.49]	
Siler 2015b	92	153.6066	195	30	147.17	179	8.7%	62.00 [31.51, 92.49]	
Siler 2016a	100	144.8772	204	-20	217.8542	205	7.0%	120.00 [84.16, 155.84]	
Siler 2016b	120	216.7761	203	0	215.6926	201	5.5%	120.00 [77.83, 162.17]	
Sousa 2016 Subtotal (95% Cl)	90	199.6294	119 1460	-33	199.0264	117 1175	4.1% 87.8%	123.00 [72.14, 173.86] 99.56 [88.71, 110.41]	↓
2.13.2 Single inhaler FULFIL study (3)	137.54	245.2979	911	-11.3	243.5198	899	12.2%	148.84 [126.32, 171.36]	
Subtotal (95% CI)			911			899		148.84 [126.32, 171.36]	
Heterogeneity: Not applica Test for overall effect: Z = 1		0.00001)							
Total (95% CI)			2371			2074	100.0%	104.56 [93.22, 115.90]	•
Heterogeneity: Tau ² = 143.	39; Chi =	42.00, df =	8 (P < 0	.00001);	; I² = 81 %			-	-100 -50 0 50 100
Test for overall effect: Z = 1	8.07 (P <	0.00001)							Favours LABA+ICS Favours LAMA+LABA+ICS
Test for subgroup difference	es: Chi ^z =	= 14.93, df =	1 (P = 0	0.0001),	l² = 93.3%				
rearies candicab amorene									
Footnotes									
	ronium +	salmeterol/	fluticaso	ne					
Footnotes				one					

8

1 Change from baseline in FEV1 at 6 months by:

2 Number of inhalers (multiple or single inhalers)



3

6

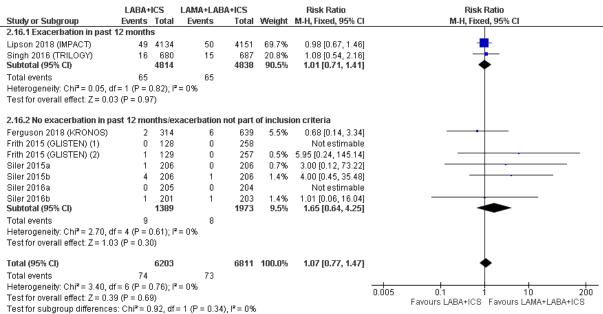
4 Change from baseline in FEV1 at 12 months by:

5 Number of inhalers (multiple or single inhalers)

7 Previous exacerbation (occurrence or no exacerbations in past 12 months as part of 8 inclusion criteria)

	LAB	АЛАМАЛС	-		LABA/ICS			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
2.15.1 Exacerbation in p	ast 12 m	onths							
Lipson 2018 (IMPACT) Subtotal (95% CI)	94	236.7242	3366 3366	-3	253.912	3060 3060	54.1% 54.1%	97.00 [84.96, 109.04] 9 7.00 [84.96, 109.04]	₹
			JJ00			J000	34.170	97.00 [04.90, 109.04]	•
Heterogeneity: Not appli									
Test for overall effect: Z =	: 15.79 (F	' < 0.00001)						
2.15.2 No exacerbation	in nast 1	2 months (exace	rhation	not nart of	inclusi	on criteri	ia	
	•								
FULFIL study (1) Subtotal (95% CI)	126	249.93	210 210	-53	255.8795	220 220	45.9% 4 5.9 %		
			210			220	43.970	179.00[151.19,220.01]	
Heterogeneity: Not appli									
Test for overall effect: Z =	= 7.34 (P	< 0.00001)							
Total (95% CI)			3576			3280	100.0%	134.60 [54.52, 214.68]	
Heterogeneity: Tau ² = 30	45.61° CI	hi≅ = 10.63	df = 1	(P = 0.0)	01): P = 919	ж			-+++
Test for overall effect: Z =				0.0.	01/11 01	~			-200 -100 0 100 200
Test for subgroup differe			df = 1 /	0 - 0 00	11 8 - 00 6	:04			Favours LABA/ICS Favours LABA/LAMA/ICS
	inces. Ch	IF= 10.63,	ui = i (P = 0.00	n), i== 90.6	170			
Footnotes									
(1) Lipson 2017									

1 All-cause mortality by:


2 Number of inhalers (multiple or single inhalers)

	LABAA		LABA/LAN			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
2.16.1 Open triple therapy							
Frith 2015 (GLISTEN) (1)	1	129	0	257	0.5%	5.95 [0.24, 145.14]	
Frith 2015 (GLISTEN) (2)	0	128	0	258		Not estimable	
Siler 2015a	1	206	0	206	0.7%	3.00 [0.12, 73.22]	
Siler 2015b	4	206	1	206	1.4%	4.00 [0.45, 35.48]	
Siler 2016a	0	205	0	204		Not estimable	
Siler 2016b	1	201	1	203	1.4%	1.01 [0.06, 16.04]	
Subtotal (95% Cl)		1075		1334	4.0%	3.00 [0.81, 11.11]	
Total events	7		2				
Heterogeneity: Chi² = 0.84, d	f= 3 (P = (0.84); l ^a	'= 0%				
Test for overall effect: Z = 1.6	5 (P = 0.1)	0)					
2.16.2 Fixed triple therapy							
Ferguson 2018 (KRONOS)	2	314	6	639	5.5%	0.68 [0.14, 3.34]	<u>+</u>
Lipson 2018 (IMPACT)	49	4134	50	4151	69.7%	0.98 [0.67, 1.46]	
Singh 2016 (TRILOGY)	16	680	15	687	20.8%	1.08 [0.54, 2.16]	_ <u>+</u>
Subtotal (95% CI)		5128		5477	96.0%	0.99 [0.71, 1.38]	•
Fotal events	67		71				
Heterogeneity: Chi² = 0.27, d	f= 2 (P = 0	0.87); l ^a	'= 0%				
Test for overall effect: Z = 0.0	8 (P = 0.9	4)					
Total (95% CI)		6203		6811	100.0%	1.07 [0.77, 1.47]	◆
Total events	74		73				
Heterogeneity: Chi² = 3.40, d	f = 6 (P = 0	0.76); l ^a	'= 0%				
Test for overall effect: Z = 0.3	9 (P = 0.6	9)					Favours LABA/ICS Favours LABA/LAMA/ICS
Test for subgroup difference	s: Chi ² = 2	.61, df	= 1 (P = 0.1	1), l ² = 61	1.7%		
Footnotes							

(1) Triple therapy: Glycopyrronium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations

(2) Triple therapy: Tiotropium + salmeterol/fluticasone. 1 death for LABA/ICS but not reported because data was split to allow comparisons with two triple...

4 Previous exacerbation (occurrence or no exacerbations in past 12 months as part of 5 inclusion criteria)

Footnotes

(1) Triple therapy: Tiotropium + salmeterol/fluticasone. 1 death for LABA/ICS but not reported because data was split to allow comparisons with two triple... (2) Triple therapy: Glycopyrronium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations

6

3

1 Prior medication

	LABA+	ICS	LAMA+LAB	A+ICS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
4.16.1 Prior LABA/ICS medic	ation						
Frith 2015 (GLISTEN) (1)	1	129	0	257	0.5%	5.95 [0.24, 145.14]	
Frith 2015 (GLISTEN) (2)	0	128	0	258		Not estimable	
Siler 2015a (3)	1	206	0	206	0.7%	3.00 [0.12, 73.22]	
Siler 2015b (4)	4	206	1	206	1.4%	4.00 [0.45, 35.48]	
Siler 2016a (5)	0	205	0	204		Not estimable	
Siler 2016b (6)	1	201	1	203	1.4%	1.01 [0.06, 16.04]	
Singh 2016 (TRILOGY) (7)	16	680	15	687	20.8%	1.08 [0.54, 2.16]	
Subtotal (95% CI)		1755		2021	24.8%	1.38 [0.76, 2.53]	◆
Total events	23		17				
Heterogeneity: Chi ² = 2.48, df	′= 4 (P = I	0.65); I ^z	= 0%				
Test for overall effect: Z = 1.06	6 (P = 0.2	9)					
4.16.2 Any prior COPD media	cation						
Ferguson 2018 (KRONOS)	2	314	6	639	5.5%	0.68 [0.14, 3.34]	
Lipson 2018 (IMPACT)	49	4134	50	4151	69.7%	0.98 [0.67, 1.46]	-
Subtotal (95% CI)		4448		4790	75.2%	0.96 [0.66, 1.41]	◆
Total events	51		56				
Heterogeneity: Chi ² = 0.20, df	′= 1 (P = I	D.66); I ≊	= 0%				
Test for overall effect: Z = 0.20	0 (P = 0.8	4)					
Total (95% CI)		6203		6811	100.0%	1.07 [0.77, 1.47]	
Total events	74		73				
Heterogeneity: Chi ^z = 3.40, df	= 6 (P = 1	0.76); I≊	= 0%				
Test for overall effect: Z = 0.39	9 (P = 0.6	9)					0.005 0.1 1 10 200 Favours LABA+ICS Favours LAMA+LABA+ICS
Test for subgroup differences			= 1 (P = 0.31), I² = 1.0	%		FAVOUIS LADATICO FAVOUIS LAIMATLABATICO
<u>Footnotes</u>							

(1) Triple therapy: Glycopyrronium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations. 1 week run-in... (2) Triple therapy: Tiotropium + salmeterol/fluticasone. 1 death for LABA/ICS but not reported because data was split to allow comparisons with two triple...

(3) 4 week run-in period: salmeterol/fluticasone

(4) 4 week run-in period: salmeterol/fluticasone

(5) 4 week run-in period: salmeterol/fluticasone

(6) 4 week run-in period: salmeterol/fluticasone (7) 2 week run-in period: Beclometasone/formoterol twice per day

2

3 Total serious adverse events by:

4 Number of inhalers (multiple or single inhalers)

	LABAA	CS	LABA/LAMA/CS			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
2.17.1 Open triple therapy							
Siler 2015a	6	206	2	206	1.3%	3.00 [0.61, 14.69]	
Siler 2016a	8	205	4	204	2.5%	1.99 [0.61, 6.51]	
Siler 2016b	15	201	6	203	3.7%	2.52 [1.00, 6.38]	
Sousa 2016	5	117	6	119	3.7%	0.85 [0.27, 2.70]	
Subtotal (95% CI)		729		732	11.2%	1.90 [1.08, 3.33]	
Total events	34		18				
Heterogeneity: Chi ² = 2.55, df	f= 3 (P = 0	0.47); l ^a	= 0%				
Test for overall effect: Z = 2.24	4 (P = 0.0)	2)					
2.17.2 Fixed triple therapy							
Ferguson 2018 (KRONOS)	21	314	55	639	22.7%	0.78 [0.48, 1.26]	
Singh 2016 (TRILOGY) Subtotal (95% CI)	123	680 994	106	687 1326	66.1% 88.8 %	1.17 [0.92, 1.49] 1.07 [0.87, 1.33]	
Total events	144		161				
Heterogeneity: Chi ² = 2.24, df	í=1 (P=0	0.13); I [≥]	= 55%				
Test for overall effect: Z = 0.63	3 (P = 0.53	3)					
Total (95% CI)		1723		2058	100.0%	1.16 [0.96, 1.42]	•
Total events	178		179				
Heterogeneity: Chi ² = 7.80, df	f= 5 (P = 0	0.17); l⁼	= 36%				
Test for overall effect: Z = 1.5	1 (P = 0.13	3)					U.1 U.2 U.5 1 2 5 10 Favours LABA/ICS Favours LABA/LAMA/ICS
Test for subgroup differences	s: Chi ^z = 3	.51, df	= 1 (P = 0.08	6), I ² = 71	1.5%		Tavoura ENDATOS TAVOURA ENDATENIMATOS

5

1 Previous exacerbation (occurrence or no exacerbations in past 12 months as part of 2 inclusion criteria)

	LADA	100	LAMA+LABA			Dial: Datio	Diale Datia
Study or Subgroup	LABA+ Events		Events	Total	Mojaht	Risk Ratio M-H, Fixed, 95% Cl	Risk Ratio M-H, Fixed, 95% Cl
2.17.1 Exacerbation in past 1			Events	TULAI	weight	M-n, rixeu, 95% Ci	M-n, rixeu, 95% Ci
Singh 2016 (TRILOGY) Subtotal (95% CI)	123	680 680	106	687 687	66.1% 66.1 %	1.17 [0.92, 1.49] 1.17 [0.92, 1.49]	→
Total events Heterogeneity: Not applicable	123		106				
Test for overall effect: Z = 1.31		3)					
2.17.2 No exacerbation in pa	st 12 mo	nths/e:	acerbation n	ot part	of inclusi	on criteria	
Ferguson 2018 (KRONOS)	21	314	55	639	22.7%	0.78 [0.48, 1.26]	_ _
Siler 2015a	6	206	2	206	1.3%	3.00 [0.61, 14.69]	
Siler 2016a	8	205	4	204	2.5%	1.99 [0.61, 6.51]	
Siler 2016b	15	201	6	203	3.7%	2.52 [1.00, 6.38]	
Sousa 2016 Subtotal (95% CI)	5	117 1043	6	119 1371	3.7% 33 . 9%	0.85 [0.27, 2.70] 1.15 [0.80, 1.64]	
Total events Heterogeneity: Chi ² = 7.77, df Test for overall effect: Z = 0.76		~ ~	73 = 49%				
Total (95% CI)		1723		2058	100.0%	1.16 [0.96, 1.42]	•
Total events Heterogeneity: Chi ^z = 7.80, df Test for overall effect: Z = 1.51 Test for subgroup differences	(P = 0.13	3)		² = 0%		- · · •	0.1 0.2 0.5 1 2 5 10 Favours LABA+ICS Favours LAMA+LABA+IC

4 Prior medication

3

	LABA	ICS	LAMA+LAB	A+ICS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	I M-H, Fixed, 95% Cl
4.17.1 Prior LABA/ICS media	cation						
Siler 2015a (1)	6	206	2	206	1.3%	3.00 [0.61, 14.69]	n
Siler 2016a (2)	8	205	4	204	2.5%	1.99 [0.61, 6.51]	1
Siler 2016b (3)	15	201	6	203	3.7%	2.52 [1.00, 6.38]	
Singh 2016 (TRILOGY) (4)	123	680	106	687	66.1%	1.17 [0.92, 1.49]	ı] - <mark></mark>
Sousa 2016	5	117	6	119	3.7%	0.85 [0.27, 2.70]	ı
Subtotal (95% Cl)		1409		1419	77.3%	1.28 [1.03, 1.59]] 🔶
Total events	157		124				
Heterogeneity: Chi ² = 4.71, d	f=4 (P=	0.32); P	'= 15%				
Test for overall effect: Z = 2.2	1 (P = 0.0	3)					
4.17.2 Any prior COPD medi	cation						
Ferguson 2018 (KRONOS) Subtotal (95% CI)	21	314 314	55	639 639	22.7% 22.7 %	0.78 [0.48, 1.26] 0.78 [0.48, 1.26]	
Total events	21		55				
Heterogeneity: Not applicabl	е						
Test for overall effect: Z = 1.0	2 (P = 0.3	1)					
Total (95% CI)		1723		2058	100.0%	1.16 [0.96, 1.42]	ı 🔶
Total events	178		179				
Heterogeneity: Chi ² = 7.80, d	f= 5 (P =	0.17); P	'= 36%				
Test for overall effect: Z = 1.5							0.05 0.2 1 5 20 Favours LABA+ICS Favours LAMA+LABA+ICS
Test for subgroup difference	•		= 1 (P = 0.07), I² = 70.	4%		FAVOUIS LADATICO FAVOUIS LAWA+LABA+ICS
Footnotes			-				
(1) 4 week run-in period: sal	meterol/flu	uticaso	ne				
 A wook run in pariod: col 							

(2) 4 week run-in period: salmeterol/fluticasone

(3) 4 week run-in period: salmeterol/fluticasone
 (4) 2 week run-in period: Beclometasone/formoterol twice per day

1 Cardiac serious adverse events by:

2 Number of inhalers (multiple or single inhalers)

	LABA	CS	LABA/LAMA	MCS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Frith 2015 (1)	2	129	1	257	14.4%	3.98 [0.36, 43.53]	
Frith 2015 (2)	2	128	6	258	85.6%	0.67 [0.14, 3.28]	
Total (95% CI)		257		515	100.0%	1.15 [0.34, 3.89]	
Total events	4		7				
Heterogeneity: Chi ² =	1.48, df=	1 (P =	0.22); I ² = 32	%			
Test for overall effect:	Z=0.22 ((P = 0.8	32)				0.01 0.1 1 10 100 Favours LABA/ICS Favours LABA/LAMA/ICS

<u>Footnotes</u>

(1) Triple therapy: Glycopyrronium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations (2) Triple therapy: Tiotropium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations

3

4 Dropout due to adverse events by:

5 Number of inhalers (multiple or single inhalers)

	LABA/	ICS	LABA/LAN	IAACS		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 95% Cl
2.20.1 Open triple therapy								
Frith 2015 (GLISTEN) (1)	9	129	14	257	3.0%	1.28 [0.57, 2.88]		
Frith 2015 (GLISTEN) (2)	8	128	17	258	3.6%	0.95 [0.42, 2.14]		
Siler 2015a	5	206	3	206	1.0%	1.67 [0.40, 6.88]		
Siler 2015b	9	206	2	207	0.6%	4.52 [0.99, 20.67]		
Siler 2016a	6	205	4	204	1.3%	1.49 [0.43, 5.21]		
Siler 2016b	12	201	9	203	2.9%	1.35 [0.58, 3.13]		
Sousa 2016	3	117	7	119	2.2%	0.44 [0.12, 1.65]		
Subtotal (95% Cl)		1192		1454	14.5%	1.27 [0.87, 1.85]		★
Total events	52		56					
Heterogeneity: Chi ^z = 5.89, d	f=6(P=	0.44); P	²=0%					
Test for overall effect: Z = 1.2	3 (P = 0.2	2)						
2.20.2 Fixed triple therapy								
Ferguson 2018 (KRONOS)	11	314	30	639	6.3%	0.75 [0.38, 1.47]		-
Lipson 2018 (IMPACT)	330	4134	249	4151	79.2%	1.33 [1.14, 1.56]		
Subtotal (95% Cl)		4448		4790	85.5%	1.29 [1.10, 1.50]		◆
Total events	341		279					
Heterogeneity: Chi ² = 2.66, d	f=1 (P=	0.10); P	²= 62%					
Test for overall effect: Z = 3.2	1 (P = 0.0	01)						
Total (95% CI)		5640		6244	100.0%	1.28 [1.11, 1.48]		
Total events	393		335					-
Heterogeneity: Chi ² = 8.57, d		0.38); P						<u> </u>
Test for overall effect: Z = 3.4		~ ~					0.05 0.2	
Test for subgroup difference			= 1 (P = 0.9	4), I ² = 0	%		Favour	'S LABA/ICS Favours LABA/LAMA/IC
Footion cabgroup amoronoo			0.0					

Footnotes

(1) Triple therapy: Glycopyrronium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations (2) Triple therapy: Tiotropium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations

1 *Previous exacerbation (occurrence or no exacerbations in past 12 months as part of* 2 *inclusion criteria)*

Cturks of Cultureum	LABA+ Events		LAMA+LAB		Wainht	Risk Ratio M-H. Fixed, 95% Cl	Risk Ratio M-H. Fixed, 95% Cl
Study or Subgroup			Events	TULAI	weight	M-H, Fixed, 95% CI	M-H, FIXEU, 95% CI
2.20.1 Exacerbation in past							
Lipson 2018 (IMPACT)	330	4134	249	4151	79.2%	1.33 [1.14, 1.56]	
Subtotal (95% CI)		4134		4151	79.2%	1.33 [1.14, 1.56]	•
Total events	330		249				
Heterogeneity: Not applicabl							
Test for overall effect: Z = 3.5	3 (P = 0.0	004)					
2.20.2 No exacerbation in pa	ast 12 mo	nths/e:	xacerbation	not part	of inclusi	on criteria	
Ferguson 2018 (KRONOS)	11	314	30	639	6.3%	0.75 [0.38, 1.47]	
Frith 2015 (GLISTEN) (1)	9	129	14	257	3.0%	1.28 [0.57, 2.88]	
Frith 2015 (GLISTEN) (2)	8	128	17	258	3.6%	0.95 [0.42, 2.14]	
Siler 2015a	5	206	3	206	1.0%	1.67 [0.40, 6.88]	
Siler 2015b	9	206	2	207	0.6%	4.52 [0.99, 20.67]	
Siler 2016a	6	205	4	204	1.3%	1.49 [0.43, 5.21]	
Siler 2016b	12	201	9	203	2.9%	1.35 [0.58, 3.13]	
Sousa 2016	3	117	7	119	2.2%	0.44 [0.12, 1.65]	
Subtotal (95% CI)		1506		2093	20.8%	1.11 [0.80, 1.54]	•
Total events	63		86				
Heterogeneity: Chi² = 7.50, d	f= 7 (P = I	0.38); P	²= 7%				
Test for overall effect: Z = 0.6	3 (P = 0.5	3)					
Fotal (95% CI)		5640		6244	100.0%	1.28 [1.11, 1.48]	•
Total events	393		335				
Heterogeneity: Chi ^z = 8.57, d	f= 8 (P = 1	0.38); P	²= 7%				0.05 0.2 1 5 20
Fest for overall effect: Z = 3.4	4 (P = 0.0	006)					U.05 U.2 1 5 20 Favours LABA+ICS Favours LAMA+LABA+ICS
Test for subgroup difference	s: Chi ² = 0).95, df	= 1 (P = 0.33), I² = 0%			FAVOUIS ENDATICO - FAVOUIS ENMATERENTICO

<u>Footnotes</u>

3

(1) Triple therapy: Glycopyrronium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations

(2) Triple therapy: Tiotropium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations

4 Prior medication

	LABA+	ICS	LAMA+LAB	A+ICS		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
4.20.1 Prior LABA/ICS medic	ation						
Frith 2015 (GLISTEN) (1)	8	128	17	258	3.6%	0.95 [0.42, 2.14]]•
Frith 2015 (GLISTEN) (2)	9	129	14	257	3.0%	1.28 [0.57, 2.88]	i —
Siler 2015a (3)	5	206	3	206	1.0%	1.67 [0.40, 6.88]]
Siler 2015b (4)	9	206	2	207	0.6%	4.52 [0.99, 20.67]]
Siler 2016a (5)	6	205	4	204	1.3%	1.49 [0.43, 5.21]]
Siler 2016b (6)	12	201	9	203	2.9%	1.35 [0.58, 3.13]	
Sousa 2016	3	117	7	119	2.2%	0.44 [0.12, 1.65]	
Subtotal (95% Cl)		1192		1454	14.5%	1.27 [0.87, 1.85]	▲
Total events	52		56				
Heterogeneity: Chi² = 5.89, d	f = 6 (P = 1	0.44); P	'= 0%				
Test for overall effect: Z = 1.2	3 (P = 0.2	2)					
4.20.2 Any prior COPD medi	cation						
Ferguson 2018 (KRONOS)	11	314	30	639	6.3%	0.75 [0.38, 1.47]	
Lipson 2018 (IMPACT)	330	4134	249	4151	79.2%	1.33 [1.14, 1.56]	
Subtotal (95% CI)		4448		4790	85.5%	1.29 [1.10, 1.50]	◆
Total events	341		279				
Heterogeneity: Chi ² = 2.66, d	f=1 (P=)	0.10); P	'= 62%				
Test for overall effect: Z = 3.2	1 (P = 0.0	01)					
Total (95% CI)		5640		6244	100.0%	1.28 [1.11, 1.48]	. ♦
Total events	393		335				
Heterogeneity: Chi² = 8.57, d	f = 8 (P = I	0.38); P	'= 7%				0.05 0.2 1 5
Test for overall effect: Z = 3.4	4 (P = 0.0	006)					Favours LABA+ICS Favours LAMA+LABA+ICS
Test for subgroup difference:	s: Chi² = 0).01, df	= 1 (P = 0.94	l), l² = 0%			Tavours ENDATION FAVOURS ENVIRTERENTICS
Footnotes							

Footnotes (1) Triple therapy: Tiotropium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations. 1 week run-in...

(2) Triple therapy: Glycopyrronium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations. 1 week run-in...
 (3) 4 week run-in period: salmeterol/fluticasone

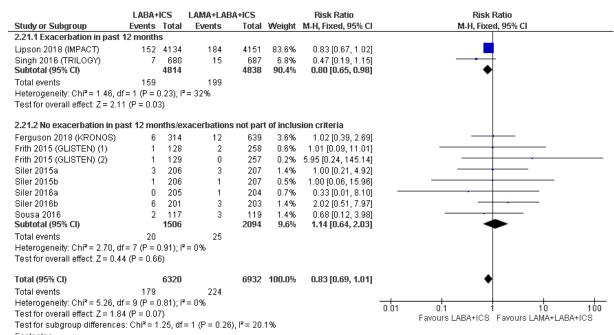
(4) 4 week run-in period: salmeterol/fluticasone

(5) 4 week run-in period: salmeterol/fluticasone

(6) 4 week run-in period: salmeterol/fluticasone

5

1 Pneumonia by:


2 Number of inhalers (multiple or single inhalers)

	LABA/		LABALAN			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
2.21.1 Open triple therapy							
Frith 2015 (GLISTEN) (1)	1	128	2	258	0.6%	1.01 [0.09, 11.01]	
Frith 2015 (GLISTEN) (2)	1	129	0	257	0.2%	5.95 [0.24, 145.14]	
Siler 2015a	3	206	3	207	1.4%	1.00 [0.21, 4.92]	
Siler 2015b	1	206	1	207	0.5%	1.00 [0.06, 15.96]	
Siler 2016a	0	205	1	204	0.7%	0.33 [0.01, 8.10]	
Siler 2016b	6	201	3	203	1.4%	2.02 [0.51, 7.97]	
Sousa 2016	2	117	3	119	1.4%	0.68 [0.12, 3.98]	
Subtotal (95% CI)		1192		1455	6.0%	1.21 [0.59, 2.49]	
Total events	14		13				
Heterogeneity: Chi ² = 2.63, d	lf = 6 (P = I	0.85); P	'= 0%				
Test for overall effect: Z = 0.5	2 (P = 0.6	0)					
2.21.2 Fixed triple therapy							
Ferguson 2018 (KRONOS)	6	314	12	639	3.6%	1.02 [0.39, 2.69]	<u>+</u>
Lipson 2018 (IMPACT)	152	4134	184	4151	83.6%	0.83 [0.67, 1.02]	
Singh 2016 (TRILOGY)	7	680	15	687	6.8%	0.47 [0.19, 1.15]	
Subtotal (95% CI)		5128		5477	94.0%	0.81 [0.66, 0.99]	•
Total events	165		211				
Heterogeneity: Chi ² = 1.68, d	lf = 2 (P = I	0.43); P	'= 0%				
Test for overall effect: Z = 2.0	6 (P = 0.0	4)					
Total (95% Cl)		6320		6932	100.0%	0.83 [0.69, 1.01]	•
Total events	179		224				
Heterogeneity: Chi ² = 5.26, d	lf = 9 (P = I	0.81); P	²= 0%				
Test for overall effect: Z = 1.8	4 (P = 0.0	7)					0.01 0.1 1 10 100 Favours LABA/ICS Favours LABA/LAMA/ICS
Test for subgroup difference	s: Chi ² = 1	.11. df	= 1 (P = 0.2	9), I ² = 11	0.1%		FAVOURS LADAVICO FAVOURS LABAVLAMAVICO
Forther the state of the state			,				

Footnotes
(1) Triple therapy: Tiotropium + salmetero/Muticasone. Events and n halved to allow for comparisons with two triple therapy combinations
(2) Triple therapy (2) Triple therapy

(2) Triple therapy: Glycopyrronium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations

4 Previous exacerbation (occurrence or no exacerbations in past 12 months as part of 5 inclusion criteria)

Footnotes (1) Triple therapy: Tiotropium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations

(2) Triple therapy: Glycopyrronium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations

6

3

1 Prior medication

	LABA+	ICS	LAMA+LAB	A+ICS		Risk Ratio	Ri	sk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, F	ixed, 95% Cl	
4.21.1 Prior LABA/ICS media	cation								
Frith 2015 (GLISTEN) (1)	1	129	0	257	0.2%	5.95 [0.24, 145.14]			
Frith 2015 (GLISTEN) (2)	1	128	2	258	0.6%	1.01 [0.09, 11.01]			
Siler 2015a (3)	3	206	3	207	1.4%	1.00 [0.21, 4.92]			
Siler 2015b (4)	1	206	1	207	0.5%	1.00 [0.06, 15.96]			
Siler 2016a (5)	0	205	1	204	0.7%	0.33 [0.01, 8.10]	· · · ·		
Siler 2016b (6)	6	201	3	203	1.4%	2.02 [0.51, 7.97]	-		
Singh 2016 (TRILOGY) (7)	7	680	15	687	6.8%	0.47 [0.19, 1.15]			
Sousa 2016	2	117	3	119	1.4%	0.68 [0.12, 3.98]			
Subtotal (95% Cl)		1872		2142	12.8%	0.82 [0.47, 1.41]	•	•	
Total events	21		28						
Heterogeneity: Chi ² = 5.09, d	lf = 7 (P = I	0.65); l ^a	'= 0%						
Test for overall effect: Z = 0.7	2 (P = 0.4	7)							
4.21.2 Any prior COPD medi	ication								
Ferguson 2018 (KRONOS)	6	314	12	639	3.6%	1.02 [0.39, 2.69]	_		
Lipson 2018 (IMPACT)	152	4134	184	4151	83.6%	0.83 [0.67, 1.02]			
Subtotal (95% CI)		4448		4790	87.2%	0.84 [0.68, 1.03]		•	
Total events	158		196						
Heterogeneity: Chi ^z = 0.16, d	if = 1 (P = 1	0.69); lª	'= 0%						
Test for overall effect: Z = 1.6	9 (P = 0.0	9)							
Total (95% CI)		6320		6932	100.0%	0.83 [0.69, 1.01]		•	
Total events	179		224						
Heterogeneity: Chi ² = 5.26, d	lf = 9 (P = 1	0.81); l ^a	'= 0%						
Test for overall effect: Z = 1.8	4 (P = 0.0	7)					0.01 0.1 Equation LABA+10	i 10 CS Favours LAMA+LA	10 BAHOR
Test for subgroup difference			= 1 (P = 0.94), I² = 0%			Favours LABA+IC	70 FRAVOURS LAWA+LA	DATICS
Footnotes			,						
<u></u>									

(1) Triple therapy: Glycopyrronium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations. 1 week run-in... (2) Triple therapy: Tiotropium + salmeterol/fluticasone. Events and n halved to allow for comparisons with two triple therapy combinations. 1 week run-in...

(3) 4 week run-in period: salmeterol/fluticasone

(4) 4 week run-in period: salmeterol/fluticasone

(5) 4 week run-in period: salmeterol/fluticasone

(6) 4 week run-in period: salmeterol/fluticasone
 (7) 2 week run-in period: Beclometasone/formoterol twice per day

1 Appendix G – GRADE tables

2 Triple therapy versus LAMA+LABA

- 3 Pooled results are shown (based on the inhaler subgroup meta-analyses), unless subgroup differences were detected. In these cases the relevant
- 4 subgroup analyses are also presented.

No. of studies	Study design	Sample size	Effect size (95% Cl)	Absolute risk: control	Absolute risk: intervention (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
Moderate to	severe exa	cerbations	(events) (RR>1	favours triple th	erapy)					
1 (Aaron 2007)	RCT	293	RR 1.08 (0.90, 1.29)	65 per 100	60 per 100 (45, 72)	Not serious	N/A	Not serious	Serious ²	Moderate
Rate of mod	erate to sev	ere exacer	bations (rate pe	er patient per yea	r) (Incidence rate	e ratio>1 favours	s triple therapy)			
3	RCT	9,017	IRR 1.17 (1.11, 1.23)	-	-	Not serious	Not serious	Not serious	Not serious	High
Severe exac	erbations (e	events) (RR	>1 favours trip	e therapy)						
1 (Aaron 2007)	RCT	293	RR 1.43 (0.92, 2.23)	26 per 100	18 per 100 (11, 28)	Not serious	N/A	Not serious	Serious ²	Moderate
Rate of seve	re exacerba	ations (rate	per patient per	year) (Incidence	rate ratio>1 favo	ours triple therap	oy)			
2	RCT	7,753	IRR 1.22 (1.11, 1.34)	-	-	Not serious	N/A	Not serious	Not serious	High
People with	≥ 4 units im	provement	in quality of lif	e (St. George's R	espiratory Quest	tionnaire respor	nders) at 6 months	(RR>1 favours	triple therapy)	
2	RCT	2,796	RR 1.10 (1.01, 1.20)	44 per 100	48 per 100 (44, 52)	Not serious	Not serious	Not serious	Not serious	High
People with	≥ 4 units im	provement	in quality of lif	e (St. George's R	espiratory Quest	tionnaire respor	nders) at 12 month	s (RR>1 favour	s triple therapy)
2	RCT	7,753	RR 1.21 (1.14, 1.29)	34 per 100	42 per 100 (39, 44)	Not serious	Serious ¹	Not serious	Serious ²	Low
Change from	n baseline ir	n St. Georg	e's Respiratory	Questionnaire (SGRQ), total sco	re at 12 months	(MD>0 favours trip	ole therapy)		
1 (Ferguson 2018)	RCT	1,216	MD 1.20 (-0.10, 2.50)	-	-	Not serious	N/A	Not serious	Not serious	High
Transition D	yspnoea Ind	dex (TDI) at	6 months (MD	>0 favours triple	therapy)					

Chronic obstructive pulmonary disease in over 16s: diagnosis and management: evidence

reviews for inhaled triple therapy DRAFT (February 2019)

No. of studies	Study design	Sample size	Effect size (95% Cl)	Absolute risk: control	Absolute risk: intervention (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
1 (Ferguson 2018)	RCT	1,201	MD 0.18 (-0.07, 0.43)	-	-	Not serious	N/A	Not serious	Not serious	High
,	yspnoea Inc	dex (TDI) at		D>0 favours triple	e therapy)					U
1 (Aaron 2007)	RCT	293	MD 0.44 (-0.46, 1.34)	-	-	Not serious	N/A	Not serious	Serious ²	Moderate
,	h baseline ir	FEV1 at 6		favours triple th	erapy)					
1 (Ferguson 2018)	RCT	1,223	MD 22.00 (3.84, 40.16)	-	-	Not serious	N/A	Not serious	Not serious	High
Change from	baseline ir	FEV1 at 1	2 months (MD>	•0 favours triple t	herapy)					
1 (Lipson 2018)	RCT	6,221	MD 54.00 (39.58, 68.42)	-	-	Not serious	N/A	Not serious	Not serious	High
All-cause mo	ortality (RR>	1 favours	triple therapy)							
4	RCT	9,310	RR 1.43 (1.00, 2.04)	2 per 100	1 per 100 (1, 2)	Not serious	Not serious	Not serious	Serious ²	Moderate
Total serious	s adverse ev	vents (RR>	1 favours triple	therapy)						
4	RCT	9,310	RR 1.07 (0.99, 1.17)	19 per 100	17 per 100 (16, 19)	Not serious	Not serious	Not serious	Not serious	High
COPD seriou	is adverse e	events (RR	>1 favours tripl	e therapy)						
1 (Papi 2018)	RCT	1,532	RR 1.13 (0.81, 1.56)	9 per 100	8 per 100 (6, 11)	Not serious	N/A	Not serious	Serious ²	Moderate
Cardiac serie	ous adverse	e events (R	R>1 favours tri	ple therapy)						
1 (Papi 2018)	RCT	1,532	RR 1.16 (0.39, 3.44)	1 per 100	1 per 100 (0, 2)	Not serious	N/A	Not serious	Very serious ³	Low
Dropout due	to adverse	events (RF	R>1 favours trip	ole therapy)						
4	RCT	9,310	RR 1.38 (1.18, 1.61)	7 per 100	5 per 100 (5, 6)	Not serious	Not serious	Not serious	Serious ²	Moderate
Pneumonia (RR>1 favou	irs triple th	erapy)							

No. of studies	Study design	Sample size	Effect size (95% Cl)	Absolute risk: control	Absolute risk: intervention (95% CI)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
3	RCT	9,017	RR 0.65 (0.50, 0.84)	2 per 100	4 per 100 (3, 5)	Not serious	Not serious	Not serious	Serious ²	Moderate

1. I² between 33.3% and 66.7%

2. 95% confidence interval crosses one end of a defined MID interval

3. 95% confidence interval crosses both ends of a defined MID interval

1 Triple therapy versus LABA+ICS

- 2 Pooled results are shown (based on the inhaler subgroup meta-analyses), unless subgroup differences were detected. In these cases the relevant
- 3 subgroup analyses are also presented.

No. of studies	Study design	Sample size	Effect size (95% Cl)	Absolute risk: control	Absolute risk: interventio n (95% Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
Moderate	to severe e	xacerbatio	ns (events) (RR>1	favours triple	therapy)					
7*	RCT	5,052	RR 1.22 (1.08, 1.38)	17 per 100	14 per 100 (12, 16)	Serious ¹	Not serious	Not serious	Serious ⁵	Low
Rate of mo	oderate to s	severe exac	cerbations (rate pe	er patient per	year) (Inciden	ce rate ratio> [,]	I favours triple ther	ару)		
3	RCT	10,605	IRR 1.18 (1.12, 1.24)	-	-	Not serious	Not serious	Not serious	Not serious	High
Subgroup	l count sub analysis: F iple therapy	Rate of mod	•	cacerbations:	Lower eosind	ophils per mic	rolitre subgroup (ra	te per patient pe	r year) (Incidenc	e rate ratio>1
3	RCT	4,953	IRR 1.16 (1.06, 1.26)	-	-	Not serious	Not serious	Not serious	Serious⁵	Moderate
	analysis: F iple therapy		derate to severe ex	cacerbations:	Higher eosine	ophils per mic	rolitre subgroup (ra	ite per patient pe	er year) (Incidenc	e rate ratio>1
3	RCT	5,648	IRR 1.40 (1.26, 1.56)	-	-	Not serious	Not serious	Not serious	Not serious	High

No. of studies	Study design	Sample size	Effect size (95% Cl)	Absolute risk: control	Absolute risk: interventio n (95% Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
Rate of se	vere exace	rbations (ra	ate per patient per	year) (Incider	nce rate ratio>	1 favours trip	le therapy)			
1 (Lipson 2018)	RCT	8,285	IRR 1.51 (1.28, 1.78)	-	-	Not serious	N/A	Not serious	Not serious	High
People wi	th ≥ 4 units	improvem	ent in quality of lif	e (St. George'	s Respiratory	Questionnair	e responders) at 3	months (RR>1 fa	vours triple the	rapy)
3	RCT	1,004	RR 1.18 (0.90, 1.54)	32 per 100	27 per 100 (20, 36)	Serious ¹	Serious ³	Not serious	Serious ⁵	Very low
People wi	th ≥ 4 units	improvem	ent in quality of lif	e (St. George'	s Respiratory	Questionnair	e responders) at 6	months (RR>1 fa	vours triple the	rapy)
3	RCT	4,117	RR 1.22 (1.13, 1.30)	40 per 100	48 per 100 (45, 52)	Serious ¹	Not serious	Not serious	Serious ⁵	Low
People wi	th ≥ 4 units	improvem	ent in quality of lif	e (St. George'	s Respiratory	Questionnair	e responders) at 12	2 months (RR>1	favours triple the	erapy)
3	RCT	10,080	RR 1.23 (1.17, 1.30)	34 per 100	42 per 100 (40, 44)	Not serious	Not serious	Not serious	Serious⁵	Moderate
Change fr	om baselin	e in St. Geo	orge's Respiratory	Questionnair	re (SGRQ), tot	al score at 3 n	nonths (MD>0 favo	urs triple therapy	()	
5	RCT	1,749	MD 1.69 (1.12, 2.26)	-	-	Serious ¹	Very serious ²	Not serious	Not serious	Very low
Change fr	om baselin	e in St. Geo	orge's Respiratory	Questionnair	re (SGRQ), tot	al score at 6 n	nonths (MD>0 favo	urs triple therapy	()	
2	RCT	2,729	MD 1.41 (-0.45, 3.27)	-	-	Serious ¹	Very serious ²	Not serious	Not serious	Very low
Change fr	om baselin	e in St. Geo	orge's Respiratory	Questionnair	re (SGRQ), tot	al score at 12	months (MD>0 fave	ours triple therap	by)	
2	RCT	6,774	MD 1.85 (1.22, 2.47)	-	-	Not serious	Not serious	Not serious	Not serious	High
Transition	Dyspnoea	Index (TDI) at 6 months (MD	>0 favours trij	ple therapy)					
3	RCT	4,087	MD 0.35 (0.19, 0.52)	-	-	Serious ¹	Serious ³	Not serious	Not serious	Low
Fransition	Dyspnoea	Index (TDI) at 12 months (M	D>0 favours tr	iple therapy)					
2	RCT	1,797	MD 0.25 (-0.03, 0.52)	-	-	Not serious	Not serious	Not serious	Not serious	High

No. of	Study	Sample	Effect size	Absolute risk:	Absolute risk: interventio	Risk of				
studies Change fro	design	size	(95% CI) at 3 months (MD>0	control	n (95% CI) e therapy)	bias	Inconsistency	Indirectness	Imprecision	Quality
9 ^{**}	RCT	4,445	MD 104.56 (93.22, 115.90)	-	-	Serious ¹	Very serious ²	Not serious	Serious⁵	Very low
Inhaler typ	e subgrou	p analysis								
Subgroup	analysis c	hange from	n baseline in FEV1	at 3 months:	multiple inha	ler triple thera	py subgroup (MD>	0 favours triple t	herapy)	
8**	RCT	2,635	MD 99.56 (88.71,110.41)	-	-	Serious ¹	Very serious ²	Not serious	Serious ⁵	Very low
Subgroup	analysis: c	hange fror	n baseline in FEV1	l at 3 months.	: single inhale	r triple therap	y subgroup (MD>0	favours triple th	erapy)	
1 (Lipson 2017)	RCT	1,810	MD 148.84 (126.32, 171.36)	-	-	Serious ⁶	N/A	Not serious	Not serious	Moderate
Change fro	om baselin	e in FEV1 a	at 6 months (MD>0	favours triple	e therapy)					
2	RCT	2,732	MD 122.42 (27.37, 217.48)	-	-	Serious ¹	Very serious ²	Not serious	Serious⁵	Very low
Change fro	om baselin	e in FEV1 a	at 12 months (MD>	0 favours trip	le therapy)					
2	RCT	6,856	MD 134.60 (54.52, 214.68)	-	-	Serious ¹	Very serious ²	Not serious	Serious⁵	Very low
Previous e Subgroup		-		at 12 month	s: exacerbatic	on in past 12 n	nonths subgroup (MD>0 favours trij	ole therapy)	
1 (Lipson 2018)	RCT	6,426	MD 97.00 (84.96, 109.04)	-	-	Not serious	N/A	Not serious	Serious	Moderate
Subgroup (MD>0 favo			n baseline in FEV1	l at 12 months	s: no exacerb	ation in past 1	12 months/exacerb	ations not part of	f inclusion criter	a subgroup
1 (Lipson 2017)	RCT	430	MD 179.00 (131.19, 226.81)	-	-	Serious ⁶	N/A	Not serious	Not serious	Moderate
All-cause r	nortality (F	RR>1 favou	irs triple therapy)							
8**	RCT	13,014	RR 1.07 (0.77, 1.47)	1 per 100	1 per 100 (1, 2)	Not serious	Not serious	Not serious	Very serious⁴	Low
Total serio	us adverse	e events (R	R>1 favours triple	therapy)						

No. of studies	Study design	Sample size	Effect size (95% Cl)	Absolute risk: control	Absolute risk: interventio n (95% Cl)	Risk of bias	Inconsistency	Indirectness	Imprecision	Quality
6	RCT	3,781	RR 1.16 (0.96, 1.42)	10 per 100	9 per 100 (7, 11)	Not serious	Serious ³	Not serious	Serious ^₅	Low
COPD seri	COPD serious adverse events (RR>1 favours triple therapy)									
1 (Singh 2016)	RCT	1,367	RR 1.17 (0.82, 1.65)	11 per 100	9 per 100 (7, 13)	Not serious	N/A	Not serious	Serious ⁵	Moderate
Cardiac se	erious adve	rse events	(RR>1 favours tri	ple therapy)						
1** (Frith 2015)	RCT	772	RR 1.15 (0.34, 3.89)	2 per 100	1 per 100 (0, 5)	Serious ¹	N/A	Not serious	Very serious ⁴	Very low
Dropout d	ue to adver	se events	(RR>1 favours trip	le therapy)						
8**	RCT	11,884	RR 1.28 (1.11, 1.48)	7 per 100	5 per 100 (5, 6)	Not serious	Not serious	Not serious	Serious⁵	Moderate
Pneumonia (RR>1 favours triple therapy)										
9**	RCT	13,252	RR 0.83 (0.69, 1.01)	3 per 100	3 per 100 (3, 4)	Not serious	Not serious	Not serious	Serious⁵	Moderate
*Includes 2	*Includes 2 papers each reporting 2 different studies									

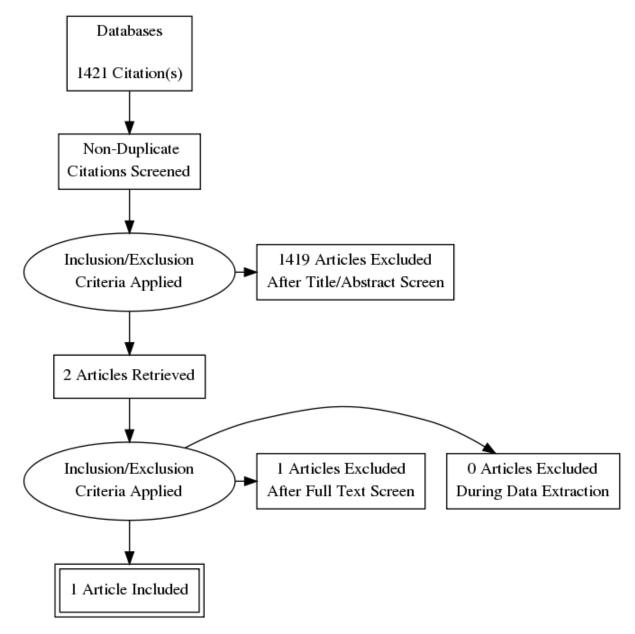
**Includes 2 comparisons from 1 study (two triple therapy arms in Frith 2015)

1. > 33.3% of the weight in a meta-analysis came from studies at moderate or high risk of bias

2. l² > 66.7%

3. I² between 33.3% and 66.7%

4. 95% confidence interval crosses both ends of a defined MID interval


5. 95% confidence interval crosses one end of a defined MID interval

6. One study at moderate risk of bias

1

2

1 Appendix H – Economic evidence study selection

1 Appendix I – Economic evidence tables

Study,				I			
population, comparators, country and quality	Data sources	Other comments	Incrementa I Cost	Incremen tal Effect	ICER	Conclusions	Uncertainty
Hertel et al. (2011)	Treatment effects	Lifetime time	Triple therapy			Triple therapy	The authors did no
Population:	Treatment-specific differences in exacerbation rates taken from a	horizon Costs and QALYs	£348	0.05	£6,960	is cost effective	conduct sensitivity analysis for the
Patients with	network meta-analysis of RCTs.	discounted at 3.5%	Triple therapy	/ versus LAM	A+LABA	compared to	comparisons of
severe or very	Costs and resource use	per annum	£129	0.03	£4,300	both	interest.
severe COPD	Unit costs taken from standard					LABA+ICS and	
Comparators	NHS sources (NHS Reference					LAMA+LABA	
(relevant to	Costs, BNF)					when QALYs	
review question): Triple therapy	Resource use data taken from					are valued at	
LABA+ICS	tiotropium clinical trial (maintenance resource use) and					£20,000 each.	
LAMA+LABA	from the GOLD strategy group						
Country:	(estimates of exacerbation						
UK	resource use).						
Partially	Utilities						
applicable ^a	Health state utilities taken from roflumilast clinical trials.						
Potentially	Exacerbation disutilities taken						
serious	from a health preference study which used the time trade-off						
limitations ^b	method to establish quality of life decrements.						

b) Relies on an assumed exacerbation rates, does not conduct probabilistic sensitivity analysis for the comparison of interest, subject to a potential conflict of interest (funded by a manufacturer of roflumilast)

2

1

1 Appendix J – Excluded studies

2 Clinical studies

	Deecon for ovelvelow
Study	Reason for exclusion
Agusti, A.; De Teresa, L.; De Backer, W.; Zvarich, M. T.; Locantore, N.; Barnes, N.; Bourbeau, J.; Crim, C., A comparison of the efficacy and safety of once-daily fluticasone furoate/vilanterol with twice-daily fluticasone propionate/ salmeterol in moderate to very severe COPD, European Respiratory Journal, 43, 3, 763-772, 2014	Study does not contain a relevant intervention
Alexander, M. J.; Zappetti, D., Is Combination Long-acting Beta-Agonist and Long-acting Muscarinic Antagonist Therapy the Future of COPD Therapy?, Clinical Pulmonary Medicine, 23, 6, 288-289, 2016	Review article but not a systematic review
Anonymous, Erratum: Triple therapy with salmeterol/fluticasone propionate 50/250 plus tiotropium bromide improve lung function versus individual treatments in moderate-to-severe Japanese COPD patients: a randomized controlled trial - Evaluation of Airway sGaw after treatment with tripLE [Corrigendum], International journal of chronic obstructive pulmonary disease, 11, 1031-1033, 2016	Duplicate reference
Anonymous, Triple therapy benifits COPD patients, Australian Journal of Pharmacy, 91, 1078, 78, 2010	Conference abstract
Anthonisen, N. R., Tiotropium and the treatment of chronic obstructive pulmonary disease, Canadian Respiratory Journal, 14, 8, 460-462, 2007	Not a peer-reviewed publication
Antohe, Ileana; Antoniu, Sabina A.; Gavrilovici, Cristina, Triple fixed inhaled therapy in frequent chronic obstructive pulmonary disease exacerbators: potential advantages for various degrees of airways obstruction, Expert opinion on pharmacotherapy, 19, 3, 287-289, 2018	Full text paper not available
Antoniu, S. A., Long-term bronchodilator inhaled therapy in COPD: The role of tiotropium bromidum, Reviews on Recent Clinical Trials, 4, 2, 89-98, 2009	Review article but not a systematic review
Anzueto, Antonio R.; Kostikas, Konstantinos; Mezzi, Karen; Shen, Steven; Larbig, Michael; Patalano, Francesco; Fogel, Robert; Banerji, Donald; Wedzicha, Jadwiga A., Indacaterol/glycopyrronium versus salmeterol/fluticasone in the prevention of clinically important deterioration in COPD: results from the FLAME study, Respiratory research, 19, 1, 121, 2018	Secondary publication of an included study that does not provide any additional relevant information
Anzueto, Antonio R.; Vogelmeier, Claus F.; Kostikas, Konstantinos; Mezzi, Karen; Fucile, Sebastian; Bader, Giovanni; Shen, Steven; Banerji, Donald; Fogel, Robert, The effect of indacaterol/glycopyrronium versus tiotropium or salmeterol/fluticasone on the prevention of clinically important deterioration in COPD, International journal of chronic obstructive pulmonary disease, 12, 1325-1337, 2017	Secondary publication of an included study that does not provide any additional relevant information
Baker, William L.; Baker, Erica L.; Coleman, Craig I., Pharmacologic treatments for chronic obstructive pulmonary disease: a mixed-treatment comparison meta-analysis, Pharmacotherapy, 29, 8, 891-905, 2009	Study does not contain a relevant intervention
Banerji, Donald; Mahler, Donald A.; Hanania, Nicola A., Efficacy and safety of LABA/LAMA fixed-dose combinations approved in the US for the management of COPD, Expert review of respiratory medicine, 10, 7, 767-80, 2016	Review article but not a systematic review
Bateman, Eric D.; Mahler, Donald A.; Vogelmeier, Claus F.; Wedzicha, Jadwiga A.; Patalano, Francesco; Banerji, Donald, Recent advances in COPD disease management with fixed-dose long-acting combination therapies, Expert review of respiratory medicine, 8, 3, 357-79, 2014	Study does not contain a relevant intervention

Official	Dessen for such size
Study	Reason for exclusion
Black, P., Preventing exacerbations of COPD - What should we do?, International Journal of Respiratory Care, 4, 1, 5-6, 2008	Full text paper not available
Bremner, Peter R.; Birk, Ruby; Brealey, Noushin; Ismaila, Afisi S.; Zhu, Chang-Qing; Lipson, David A., Single-inhaler fluticasone furoate/umeclidinium/vilanterol versus fluticasone furoate/vilanterol plus umeclidinium using two inhalers for chronic obstructive pulmonary disease: a randomized non-inferiority study, Respiratory research, 19, 1, 19, 2018	Triple v triple
Cazzola, Mario; Matera, Maria Gabriella, Triple combinations in chronic obstructive pulmonary disease - is three better than two?, Expert opinion on pharmacotherapy, 15, 17, 2475-8, 2014	Review article but not a systematic review
Chapman, K. R.; Roche, N.; Ayers, Tim; FowlerTaylor, A.; Thach, C.; Ahlers, N., Indacaterol/glycopyrronium (IND/GLY) is superior to salmeterol/fluticasone (SFC) in improving the health status of patients with moderate-to-very severe COPD: results from the FLAME study, European respiratory journal, 48, suppl60, pa982, 2016	Study does not contain a relevant intervention
Criner, G. J., Optimal treatment of chronic obstructive pulmonary disease: The search for the magic combination of inhaled bronchodilators and corticosteroids, Annals of Internal Medicine, 146, 8, 606-608, 2007	Review article but not a systematic review
Do Lee, S.; Xie, C. M.; Yunus, F.; Itoh, Y.; Su, R., Efficacy and tolerability of budesonide/formoterol (B/F) added to tiotropium (T) vs T alone in East-Asian patients (pts) with severe/very severe chronic obstructive pulmonary disease (COPD), European respiratory journal, 44, suppl58, p282, 2014	Not a peer-reviewed publication
Donohue, James F.; Worsley, Sally; Zhu, Chang-Qing; Hardaker, Liz; Church, Alison, Improvements in lung function with umeclidinium/vilanterol versus fluticasone propionate/salmeterol in patients with moderate-to-severe COPD and infrequent exacerbations, Respiratory medicine, 109, 7, 870-81, 2015	Not a peer-reviewed publication
Dransfield, M. T.; Feldman, G.; Korenblat, P.; Laforce, C. F.; Locantore, N.; Pistolesi, M.; Watkins, M. L.; Crim, C.; Martinez, F. J., Efficacy and safety of once-daily fluticasone furoate/vilanterol (100/25 mcg) versus twice-daily fluticasone propionate/salmeterol (250/50 mcg) in COPD patients, Respiratory Medicine, 108, 8, 1171-1179, 2014	Study does not contain a relevant intervention
Farne, Hugo A.; Cates, Christopher J., Long-acting beta2-agonist in addition to tiotropium versus either tiotropium or long-acting beta2-agonist alone for chronic obstructive pulmonary disease, The Cochrane database of systematic reviews, , 10, cd008989, 2015	Study does not contain a relevant intervention
Fogel, R.; Chapman, K. R.; Vogelmeier, C. F.; FowlerTaylor, A.; Ayers, T.; Thach, C., Once-daily indacaterol/glycopyrronium (IND/GLY) reduces use of rescue medication versus twice-daily salmeterol/fluticasone (SFC) in patients with moderate-to-very severe COPD: results from the FLAME study, European respiratory journal, 48, suppl60, pa990, 2016	Study does not contain a relevant intervention
Frampton, James E., QVA149 (indacaterol/glycopyrronium fixed-dose combination): a review of its use in patients with chronic obstructive pulmonary disease, Drugs, 74, 4, 465-88, 2014	Review article but not a systematic review
Halpin, D. M. G.; Birk, R.; Brealey, N.; Criner, G. J.; Dransfield, M. T.; Hilton, E.; Lomas, D. A.; Zhu, C. Q.; Lipson, D. A., Single-inhaler triple therapy in symptomatic COPD patients: FULFIL subgroup analyses, ERJ open research, 4, 2nopagination, 2018	Duplicate reference

Study	Reason for exclusion
Halpin, David M. G.; Birk, Ruby; Brealey, Noushin; Criner, Gerard J.; Dransfield, Mark T.; Hilton, Emma; Lomas, David A.; Zhu, Chang-Qing; Lipson, David A., Single-inhaler triple therapy in symptomatic COPD patients: FULFIL subgroup analyses, ERJ open research, 4, 2, 2018	Secondary publication of an included study that does not provide any additional relevant information
Hanania, Nicola A.; Crater, Glenn D.; Morris, Andrea N.; Emmett, Amanda H.; O'Dell, Dianne M.; Niewoehner, Dennis E., Benefits of adding fluticasone propionate/salmeterol to tiotropium in moderate to severe COPD, Respiratory medicine, 106, 1, 91-101, 2012	Triple v monotherapy
Herman, J. B.; West, F. M.; Zappetti, D., Are We FULFIL-led by a Once- daily Triple-therapy Inhaler for Chronic Obstructive Pulmonary Disease?, Clinical Pulmonary Medicine, 25, 2, 77-78, 2018	Secondary publication of an included study that does not provide any additional relevant information
Hizawa, Nobuyuki, LAMA/LABA vs ICS/LABA in the treatment of COPD in Japan based on the disease phenotypes, International journal of chronic obstructive pulmonary disease, 10, 1093-102, 2015	Review article but not a systematic review
Horita, Nobuyuki; Goto, Atsushi; Shibata, Yuji; Ota, Erika; Nakashima, Kentaro; Nagai, Kenjiro; Kaneko, Takeshi, Long-acting muscarinic antagonist (LAMA) plus long-acting beta-agonist (LABA) versus LABA plus inhaled corticosteroid (ICS) for stable chronic obstructive pulmonary disease (COPD), The Cochrane database of systematic reviews, 2, cd012066, 2017	Study does not contain a relevant intervention
Horita, Nobuyuki; Kaneko, Takeshi, Triple therapy vs. dual bronchodilator therapy for chronic obstructive pulmonary disease: Is it worth the cost?, Respiratory investigation, 53, 4, 173-5, 2015	Not a peer-reviewed publication
Horita, Nobuyuki; Miyazawa, Naoki; Tomaru, Koji; Inoue, Miyo; Kaneko, Takeshi, Long-acting muscarinic antagonist+long-acting beta agonist versus long-acting beta agonist+inhaled corticosteroid for COPD: A systematic review and meta-analysis, Respirology (Carlton, Vic.), 20, 8, 1153-9, 2015	Systematic review not used as a source of primary studies
Hoshino, Makoto; Ohtawa, Junichi, Effects of adding salmeterol/fluticasone propionate to tiotropium on airway dimensions in patients with chronic obstructive pulmonary disease, Respirology (Carlton, Vic.), 16, 1, 95-101, 2011	Triple v monotherapy
Huisman, E. L.; Cockle, S. M.; Ismaila, A. S.; Punekar, Y. S., Comparative efficacy of combination bronchodilator therapies in COPD: A network meta-analysis, International Journal of COPD, 10, 1, 1863- 1881, 2015	Systematic review not used as a source of primary studies
Ismaila, Afisi S.; Birk, Ruby; Shah, Dhvani; Zhang, Shiyuan; Brealey, Noushin; Risebrough, Nancy A.; Tabberer, Maggie; Zhu, Chang-Qing; Lipson, David A., Once-Daily Triple Therapy in Patients with Advanced COPD: Healthcare Resource Utilization Data and Associated Costs from the FULFIL Trial, Advances in therapy, 34, 9, 2163-2172, 2017	Secondary publication of an included study that does not provide any additional relevant information
Jung, Ki Suck; Park, Hye Yun; Park, So Young; Kim, Se Kyu; Kim, Young-Kyoon; Shim, Jae-Jeong; Moon, Hwa Sik; Lee, Kwan Ho; Yoo, Jee-Hong; Lee, Sang Do; Korean Academy of, Tuberculosis; Respiratory Diseases study, group; Korea Chronic Obstructive Pulmonary Disease study, group, Comparison of tiotropium plus fluticasone propionate/salmeterol with tiotropium in COPD: a randomized controlled study, Respiratory medicine, 106, 3, 382-9, 2012	Triple v monotherapy
Kaplan, A., Effects of tiotropium combined with either salmeterol or salmeterol/fluticasone in moderate to severe COPD, Primary care respiratory journal, 16, 4, 258260, 2007	Conference abstract

Study	Reason for exclusion
Kaplan, Alan, Effect of tiotropium on quality of life in COPD: a systematic review, Primary care respiratory journal : journal of the General Practice Airways Group, 19, 4, 315-25, 2010	Systematic review not used as a source of primary studies
Karner, Charlotta; Cates, Christopher J., Combination inhaled steroid and long-acting beta(2)-agonist in addition to tiotropium versus tiotropium or combination alone for chronic obstructive pulmonary disease, The Cochrane database of systematic reviews, , 3, cd008532, 2011	Systematic review not used as a source of primary studies
Karner, Charlotta; Cates, Christopher J., The effect of adding inhaled corticosteroids to tiotropium and long-acting beta(2)-agonists for chronic obstructive pulmonary disease, The Cochrane database of systematic reviews, , 9, cd009039, 2011	Systematic review not used as a source of primary studies
Kerwin, E.; Ferguson, G. T.; Sanjar, S.; Goodin, T.; Yadao, A.; Fogel, R.; Maitra, S.; Sen, B.; Ayers, T.; Banerji, D., Dual Bronchodilation with Indacaterol Maleate/Glycopyrronium Bromide Compared with Umeclidinium Bromide/Vilanterol in Patients with Moderate-to-Severe COPD: Results from Two Randomized, Controlled, Cross-over Studies, Lung, 195, 6, 739-747, 2017	Study does not contain a relevant intervention
Kwak, Min-Sun; Kim, Eunyoung; Jang, Eun Jin; Kim, Hyun Jung; Lee, Chang-Hoon, The efficacy and safety of triple inhaled treatment in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis using Bayesian methods, International journal of chronic obstructive pulmonary disease, 10, 2365-76, 2015	Systematic review not used as a source of primary studies
Larbig, M.; Vogelmeier, C. F.; N, Roche; Ayers, T.; FowlerTaylor, A.; Thach, C.; Shrinivasan, A.; Fogel, R.; Patalano, F.; Banerji, D., Efficacy of indacaterol/glycopyrronium (IND/GLY versus salmeterol/fluticasone (SFC) on exacerbations and health status in GOLD Group D COPD patients: the FLAME study, Respirology (carlton, vic.), 22, suppl2, 131tp050, 2017	Study does not contain a relevant intervention
Lee, Sang-Do; Xie, Can-Mao; Yunus, Faisal; Itoh, Yohji; Ling, Xia; Yu, Wai-cho; Kiatboonsri, Sumalee, Efficacy and tolerability of budesonide/formoterol added to tiotropium compared with tiotropium alone in patients with severe or very severe COPD: A randomized, multicentre study in East Asia, Respirology (Carlton, Vic.), 21, 1, 119-27, 2016	Triple v monotherapy
Lipson, David A.; Barnacle, Helen; Birk, Ruby; Brealey, Noushin; Locantore, Nicholas; Lomas, David A.; Ludwig-Sengpiel, Andrea; Mohindra, Rajat; Tabberer, Maggie; Zhu, Chang-Qing; Pascoe, Steven J., FULFIL Trial: Once-Daily Triple Therapy for Patients with Chronic Obstructive Pulmonary Disease, American journal of respiratory and critical care medicine, 196, 4, 438-446, 2017	Duplicate reference
Lomas, D.; Lipson, D.; Barnacle, H.; Birk, R.; Brealey, N.; Zhu, C. Q., Single inhaler triple therapy (ICS/LAMA/LABA) in patients with advanced COPD: results of the FULFIL trial, European respiratory journal, 48, suppl60, pa4629, 2016	Conference abstract
Mahler, Donald A.; Keininger, Dorothy L.; Mezzi, Karen; Fogel, Robert; Banerji, Donal, Efficacy of Indacaterol/Glycopyrronium in Patients with COPD Who Have Increased Dyspnea with Daily Activities, Chronic obstructive pulmonary diseases (Miami, Fla.), 3, 4, 758-768, 2016	Secondary publication of an included study that does not provide any additional relevant information
Maltais, Francois; Mahler, Donald A.; Pepin, Veronique; Nadreau, Eric; Crater, Glenn D.; Morris, Andrea N.; Emmett, Amanda H.; Ferro, Thomas J., Effect of fluticasone propionate/salmeterol plus tiotropium	Study does not contain a relevant intervention

Church .	Dessen for evolution
Study versus tiotropium on walking endurance in COPD, The European	Reason for exclusion
respiratory journal, 42, 2, 539-41, 2013	
Mehta, Rashmi; Pefani, Eleni; Beerahee, Misba; Brealey, Noushin; Barnacle, Helen; Birk, Ruby; Zhu, Chang-Qing; Lipson, David A., Population Pharmacokinetic Analysis of Fluticasone Furoate/Umeclidinium/Vilanterol via a Single Inhaler in Patients with COPD, Journal of clinical pharmacology, , 2018	Study does not contain a relevant intervention
Mills, Edward J.; Druyts, Eric; Ghement, Isabella; Puhan, Milo A., Pharmacotherapies for chronic obstructive pulmonary disease: a multiple treatment comparison meta-analysis, Clinical epidemiology, 3, 107-29, 2011	Systematic review not used as a source of primary studies
Miravitlles, M.; Anzueto, A.; Jardim, J. R., Optimizing bronchodilation in the prevention of COPD exacerbations, Respiratory Research, 18, 1, 125, 2017	Review article but not a systematic review
Mittmann, Nicole; Hernandez, Paul; Mellstrom, Carl; Brannman, Lance; Welte, Tobias, Cost effectiveness of budesonide/formoterol added to tiotropium bromide versus placebo added to tiotropium bromide in patients with chronic obstructive pulmonary disease: Australian, Canadian and Swedish healthcare perspectives, PharmacoEconomics, 29, 5, 403-14, 2011	Study does not contain outcomes of interest
Molino, Antonio; Calabrese, Giovanna; Maniscalco, Mauro, Patient considerations in the treatment of COPD: focus on the new combination inhaler fluticasone furoate/umeclidinium/vilanterol, Patient preference and adherence, 12, 993-1001, 2018	Review article but not a systematic review
Oba, Yuji; Chandran, Arul V.; Devasahayam, Joe V., Long-acting Muscarinic Antagonist Versus Inhaled Corticosteroid when Added to Long-acting beta-agonist for COPD: A Meta-analysis, COPD, 13, 6, 677-685, 2016	Study does not contain a relevant intervention
Olsson, P.; Roche, N.; Vestbo, J.; FowlerTaylor, A.; Ayers, T.; Thach, C., Cardiovascular (CV) safety of indacaterol/glycopyrronium (IND/GLY) compared with salmeterol/fluticasone combination (SFC) in moderate- to-very severe COPD patients with prior exacerbations: the FLAME study, European respiratory journal, 48, suppl60, pa311, 2016	Study does not contain a relevant intervention
Pascoe, Steven J.; Lipson, David A.; Locantore, Nicholas; Barnacle, Helen; Brealey, Noushin; Mohindra, Rajat; Dransfield, Mark T.; Pavord, Ian; Barnes, Neil, A phase III randomised controlled trial of single-dose triple therapy in COPD: the IMPACT protocol, The European respiratory journal, 48, 2, 320-30, 2016	Not a relevant study design [IMPACT Protocol]
Patalano, F.; Wedzicha, J. A.; Vestbo, J.; FowlerTaylor, A.; Ayers, T.; Thach, C.; Ruparelia, N.; Fogel, R.; Banerji, D., Indacaterol/glycopyrronium (IND/GLY) reduces exacerbation and improves lung function versus salmeterol/fluticasone (SFC) in patients with and without prior ICS use: the FLAME study, Respirology (carlton, vic.), 22, suppl2, 137tp063, 2017	Study does not contain a relevant intervention
Petite, Sarah E., Role of Long-Acting Muscarinic Antagonist/Long- Acting beta2-Agonist Therapy in Chronic Obstructive Pulmonary Disease, The Annals of pharmacotherapy, 51, 8, 696-705, 2017	Systematic review not used as a source of primary studies
Puhan, Milo A.; Bachmann, Lucas M.; Kleijnen, Jos; Ter Riet, Gerben; Kessels, Alphons G., Inhaled drugs to reduce exacerbations in patients with chronic obstructive pulmonary disease: a network meta-analysis, BMC medicine, 7, 2, 2009	Systematic review not used as a source of primary studies
Rees, P. J., Tiotropium in the management of chronic obstructive pulmonary disease, European Respiratory Journal, 19, 2, 205-206, 2002	Not a peer-reviewed publication

Study	Reason for exclusion
Rennard, S. I., Combination bronchodilator therapy in COPD, Chest,	Study does not contain a
107, 5suppl, 171S-175S, 1995	relevant intervention
Rice-McDonald, G., Using tiotropium in the treatment of COPD, Medicine Today, 5, 9, 75-76, 2004	Not a peer-reviewed publication
Rodrigo, Gustavo J.; Plaza, Vicente; Castro-Rodriguez, Jose A., Comparison of three combined pharmacological approaches with tiotropium monotherapy in stable moderate to severe COPD: a systematic review, Pulmonary pharmacology & therapeutics, 25, 1, 40- 7, 2012	Systematic review not used as a source of primary studies
Rodrigo, Gustavo J.; Price, David; Anzueto, Antonio; Singh, Dave; Altman, Pablo; Bader, Giovanni; Patalano, Francesco; Fogel, Robert; Kostikas, Konstantinos, LABA/LAMA combinations versus LAMA monotherapy or LABA/ICS in COPD: a systematic review and meta- analysis, International journal of chronic obstructive pulmonary disease, 12, 907-922, 2017	Systematic review not used as a source of primary studies
Roisman, G., Tiotropium in combination with placebo, salmeterol, or fluticasone- salmeterol for treatment of chronic obstructive pulmonary disease. A randomized trial, Revue de pneumologie clinique, 63, 6, 390391, 2007	Conference abstract Study not reported in English
Rojas-Reyes, Maria Ximena; Garcia Morales, Olga M.; Dennis, Rodolfo J.; Karner, Charlotta, Combination inhaled steroid and long-acting beta2-agonist in addition to tiotropium versus tiotropium or combination alone for chronic obstructive pulmonary disease, The Cochrane database of systematic reviews, , 6, cd008532, 2016	Duplicate reference
Saito, Takefumi; Takeda, Akinori; Hashimoto, Katsuji; Kobayashi, Akihiro; Hayamizu, Tomoyuki; Hagan, Gerald W., Triple therapy with salmeterol/fluticasone propionate 50/250 plus tiotropium bromide improve lung function versus individual treatments in moderate-to- severe Japanese COPD patients: a randomized controlled trial - Evaluation of Airway sGaw after treatment with tripLE, International journal of chronic obstructive pulmonary disease, 10, 2393-404, 2015	Study does not contain a relevant intervention
Schlueter, Max; Gonzalez-Rojas, N.; Baldwin, Michael; Groenke, Lars; Voss, Florian; Reason, Tim, Comparative efficacy of fixed-dose combinations of long-acting muscarinic antagonists and long-acting beta2-agonists: a systematic review and network meta-analysis, Therapeutic advances in respiratory disease, 10, 2, 89-104, 2016	Systematic review not used as a source of primary studies
Siler, Thomas M.; Kerwin, Edward; Sousa, Ana R.; Donald, Alison; Ali, Rehan; Church, Alison, Efficacy and safety of umeclidinium added to fluticasone furoate/vilanterol in chronic obstructive pulmonary disease: Results of two randomized studies, Respiratory medicine, 109, 9, 1155- 63, 2015	Duplicate reference
Singh, D.; Papi, A.; Corradi, M.; Montagna, I.; Francisco, C.; Cohuet, G., TRILOGY: a phase III study to evaluate the efficacy and safety of an extrafine triple combination of beclometasone dipropionate (BDP), formoterol fumarate (FF), and glycopyrronium bromide (GB) pMDI (CHF5993) in COPD patients, European respiratory journal, 48, suppl60, pa995, 2016	Conference abstract
Singh, D.; Worsley, S.; Zhu, C. Q.; Hardaker, L.; Church, A., Umeclidinium/vilanterol (UMEC/VI) once daily (OD) vs fluticasone/salmeterol combination (FSC) twice daily (BD) in patients with moderate-to-severe COPD and infrequent COPD exacerbations, European respiratory journal, 44, suppl58, p290, 2014	Study does not contain a relevant intervention
Singh, Dave, Single inhaler triple therapy with extrafine beclomethasone, formoterol, and glycopyrronium for the treatment of	Full text paper not available

Study	Reason for exclusion
chronic obstructive pulmonary disease, Expert opinion on	Reason for exclusion
pharmacotherapy, 19, 11, 1279-1287, 2018	
Singh, Dave; Corradi, Massimo; Spinola, Monica; Papi, Alberto; Usmani, Omar S.; Scuri, Mario; Petruzzelli, Stefano; Vestbo, Jorgen, Triple therapy in COPD: new evidence with the extrafine fixed combination of beclomethasone dipropionate, formoterol fumarate, and glycopyrronium bromide, International journal of chronic obstructive pulmonary disease, 12, 2917-2928, 2017	Review article but not a systematic review
Thompson, P.; Frith, P.; Frenzel, C.; Kurstjens, N., Randomized controlled trial of glycopyrronium added to fixed combination salmeterol-fluticasone in COPD: primary care and specialist site differences in the glisten study, Respirology (carlton, vic.), 20, suppl2, 80tp045, 2015	Conference abstract
Tricco, Andrea C.; Strifler, Lisa; Veroniki, Areti-Angeliki; Yazdi, Fatemeh; Khan, Paul A.; Scott, Alistair; Ng, Carmen; Antony, Jesmin; Mrklas, Kelly; D'Souza, Jennifer; Cardoso, Roberta; Straus, Sharon E., Comparative safety and effectiveness of long-acting inhaled agents for treating chronic obstructive pulmonary disease: a systematic review and network meta-analysis, BMJ open, 5, 10, e009183, 2015	Systematic review not used as a source of primary studies
Vestbo, J.; Corradi, M.; Montagna, I.; Cohuet, G.; Francisco, C.; Vezzoli, S., TRINITY: a phase III study to compare the efficacy and safety of an extrafine triple combination of beclometasone dipropionate (BDP), formoterol fumarate (FF), and glycopyrronium bromide (GB) pMDI (CHF5993) with tiotropium (Tio) and a free triple combination of BDP/FF (Foster®) + Tio in COPD patients, European respiratory journal, 48, suppl60, oa1972, 2016	Conference abstract
Vestbo, Jorgen; Papi, Alberto; Corradi, Massimo; Blazhko, Viktor; Montagna, Isabella; Francisco, Catherine; Cohuet, Geraldine; Vezzoli, Stefano; Scuri, Mario; Singh, Dave, Single inhaler extrafine triple therapy versus long-acting muscarinic antagonist therapy for chronic obstructive pulmonary disease (TRINITY): a double-blind, parallel group, randomised controlled trial, Lancet (London, England), 389, 10082, 1919-1929, 2017	Triple v triple
Vogelmeier, C.; Paggiaro, P. L.; Dorca, J.; Sliwinski, P.; Mallet, M.; Kirsten, A. M., The efficacy and safety of aclidinium/formoterol fixed- dose combination compared with salmeterol/fluticasone in patients with COPD: results from a phase III study, American journal of respiratory and critical care medicine, 191, meetingabstracts, a3974, 2015	Conference abstract
Vogelmeier, C.; Paggiaro, P. L.; Dorca, J.; Sliwinski, P.; Mallet, M.; Kirsten, A. M., Efficacy of aclidinium/formoterol fixed-dose combination versus salmeterol/fluticasone in COPD, European respiratory journal, 46, 2015	Conference abstract
Vogelmeier, Claus; Zhong, Nanshan; Humphries, Michael J.; Mezzi, Karen; Fogel, Robert; Bader, Giovanni; Patalano, Francesco; Banerji, Donald, Indacaterol/glycopyrronium in symptomatic patients with COPD (GOLD B and GOLD D) versus salmeterol/fluticasone: ILLUMINATE/LANTERN pooled analysis, International journal of chronic obstructive pulmonary disease, 11, 3189-3197, 2016	Secondary publication of an included study that does not provide any additional relevant information
Wedzicha, Jadwiga A.; Banerji, Donald; Chapman, Kenneth R.; Vestbo, Jorgen; Roche, Nicolas; Ayers, R. Timothy; Thach, Chau; Fogel, Robert; Patalano, Francesco; Vogelmeier, Claus F.; Investigators, Flame, Indacaterol-Glycopyrronium versus Salmeterol-Fluticasone for COPD, The New England journal of medicine, 374, 23, 2222-34, 2016	Study does not contain a relevant intervention
Wedzicha, Jadwiga A.; Zhong, Nanshan; Ichinose, Masakazu; Humphries, Michael; Fogel, Robert; Thach, Chau; Patalano, Francesco; Banerji, Donald, Indacaterol/glycopyrronium versus	Study does not contain a relevant intervention

Study	Reason for exclusion
salmeterol/fluticasone in Asian patients with COPD at a high risk of exacerbations: results from the FLAME study, International journal of chronic obstructive pulmonary disease, 12, 339-349, 2017	
Welte, T., Optimising treatment for COPDnew strategies for combination therapy, International journal of clinical practice, 63, 8, 1136-49, 2009	Review article but not a systematic review
Welte, T.; Miravitlles, M.; Hernandez, P.; Hartman, L.; Polanowski, T.; Kessler, R., Budesonide/formoterol added to tiotropium improves lung function, health status, symptoms & morning activities in COPD patients, European respiratory society annual congress, vienna, austria, september 12-16, , p2005, 2009	Conference abstract
Welte, Tobias; Miravitlles, Marc; Hernandez, Paul; Eriksson, Goran; Peterson, Stefan; Polanowski, Tomasz; Kessler, Romain, Efficacy and tolerability of budesonide/formoterol added to tiotropium in patients with chronic obstructive pulmonary disease, American journal of respiratory and critical care medicine, 180, 8, 741-50, 2009	Triple v monotherapy
Wheeler, K., Umeclidinium triple therapy for patients with COPD: Two studies, Drug Topics, 160, 5, 2016	Conference abstract
Zhu, Ying; Zhang, Tong; Li, Haiyan; Yang, Yang; Chen, Qiong; Kong, Lei; Tai, Bo, Discovering the Relative Efficacy of Inhaled Medications for Chronic Obstructive Pulmonary Disease: Multiple Treatment Comparisons, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 41, 4, 1532-1546, 2017	Systematic review not used as a source of primary studies

1 Economic studies

Author (year)	Reason for exclusion
Najafzadeh, M., Marra, C.A., Sadatsafavi, M., Aaron, S.D., Vandemheem, K.L., Sullivan, S., Jones, P.W. and Fitzgerald, M.J., 2008. Cost-Effectiveness of Therapy with Combinations of Long-Acting Bronchodilators and Inhaled Steroids for Treatment of COPD. Thorax.	Non-UK healthcare system perspective

2

1 Appendix K – References

2 Included clinical studies

Aaron SD, Vandemheen KL, Fergusson D, Maltais F, Bourbeau J, Goldstein R, Balter M,
 O'Donnell D, McIvor A, Sharma S, Bishop G, Anthony J, Cowie R, Field S, Hirsch A,

Donnell D, McIvor A, Sharma S, Bishop G, Anthony J, Cowle R, Field S, Hirsch A,
 Hernandez P, Rivington R, Road J, Hoffstein V, Hodder R, Marciniuk D, McCormack D, Fox

6 G, Cox G, Prins HB, Ford G, Bleskie D, Doucette S, Mayers I, Chapman K, Zamel N, and

7 FitzGerald M (2007) Tiotropium in Combination with Placebo, Salmeterol, or Fluticasone–

8 Salmeterol for Treatment of Chronic Obstructive Pulmonary Disease. Annals of Internal

9 Medicine 146, 545-555

10 Cazzola M, Ando F, Santus P, Ruggeri P, Di Marco F, Sanduzzi A, and D'Amato M (2007) A

11 pilot study to assess the effects of combining fluticasone propionate/salmeterol and

12 tiotropium on the airflow obstruction of patients with severe-to-very severe COPD. Pulmonary

13 pharmacology & therapeutics 20(5), 556-61

14 Ferguson GT, Rabe KF, Martinez FJ, Fabbri LM, Wang C, Ichinose M, Bourne E, Ballal S,

15 Darken P, DeAngelis K, Aurivillius M, Dorinsky P, and Reisner C (2018) Triple therapy with

16 budesonide/glycopyrrolate/formoterol fumarate with co-suspension delivery technology

17 versus dual therapies in chronic obstructive pulmonary disease (KRONOS): a double-blind,

18 parallel-group, multicentre, phase 3 randomised controlled trial. The Lancet. Respiratory

19 medicine 6(10), 747-758

Frith PA, Thompson PJ, Ratnavadivel R, Chang CL, Bremner P, Day P, Frenzel C, and
 Kurstjens N (2015) Glycopyrronium once-daily significantly improves lung function and health

status when combined with salmeterol/fluticasone in patients with COPD: the GLISTEN

study, a randomised controlled trial.. Thorax 70(6), 519-27

Hoshino M, and Ohtawa J (2013) Effects of tiotropium and salmeterol/fluticasone propionate
on airway wall thickness in chronic obstructive pulmonary disease. Respiration, and
international review of thoracic diseases 86(4), 280-7

Lipson DA, Barnacle H, Birk R, Brealey N, Locantore N, Lomas DA, Ludwig-Sengpiel A,
Mohindra R, Tabberer M, Zhu CQ, and Pascoe SJ (2017) FULFIL Trial: Once-Daily Triple
Therapy for Patients with Chronic Obstructive Pulmonary Disease. American journal of
respiratory and critical care medicine 196(4), 438-446

Lipson DA, Barnhart F, Brealey N, Brooks J, Criner GJ, Day NC, Dransfield MT, Halpin
DMG, Han MK, Jones CE, Kilbride S, Lange P, Lomas DA, Martinez FJ, Singh D, Tabberer
M, Wise RA, and Pascoe SJ (2018) Once-Daily Single-Inhaler Triple versus Dual Therapy in
Patients with COPD.. The New England journal of medicine 378(18), 1671-1680

Papi A, Vestbo J, Fabbri L, Corradi M, Prunier H, Cohuet G, Guasconi A, Montagna I,
Vezzoli S, Petruzzelli S, Scuri M, Roche N, and Singh D (2018) Extrafine inhaled triple
therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease

- 38 (TRIBUTE): a double-blind, parallel group, randomised controlled trial.. Lancet (London, and 39 England) 391(10125), 1076-1084
- 40 Siler TM, Kerwin E, Sousa AR, Donald A, Ali R and Church A (2015) Efficacy and safety of 41 umeclidinium added to fluticasone furoate/vilanterol in chronic obstructive pulmonary 42 diagonal Deputts of two rendemized studies. Despiratory medicine, 100(0), 1155-62
- 42 disease: Results of two randomized studies. Respiratory medicine, 109(9), 1155-63

43 Siler TM, Kerwin E, Singletary K, Brooks J, and Church A (2016) Efficacy and Safety of

44 Umeclidinium Added to Fluticasone Propionate/Salmeterol in Patients with COPD: Results of 45 Two Pandomized, Double Plind Studios, COPD 12(1), 1,10

45 Two Randomized, Double-Blind Studies.. COPD 13(1), 1-10

- 1 Singh D, Papi A, Corradi M, Pavlisova I, Montagna I, Francisco C, Cohuet G, Vezzoli S,
- 2 Scuri M, and Vestbo J (2016) Single inhaler triple therapy versus inhaled corticosteroid plus
- 3 long-acting beta2-agonist therapy for chronic obstructive pulmonary disease (TRILOGY): a
- 4 double-blind, parallel group, randomised controlled trial. Lancet (London, and England)
- 5 388(10048), 963-73
- 6 Sousa AR, Riley JH, Church A, Zhu CQ, Punekar YS, and Fahy WA (2016) The effect of
- 7 umeclidinium added to inhaled corticosteroid/long-acting beta2-agonist in patients with
- 8 symptomatic COPD: a randomised, double-blind, parallel-group study.. NPJ primary care
- 9 respiratory medicine 26, 16031
- 10 Tabberer M, Lomas DA, Birk R, Brealey N, Zhu CQ, Pascoe S, Locantore N, and Lipson DA
- 11 (2018) Once-Daily Triple Therapy in Patients with COPD: Patient-Reported Symptoms and
- 12 Quality of Life. Advances in therapy 35(1), 56-71

13 Included economic studies

- 14 Hertel, N., Kotchie, R.W., Samyshkin, Y., Radford, M., Humphreys, S. and Jameson, K.,
- 2012. Cost-effectiveness of available treatment options for patients suffering from severe 15
- COPD in the UK: a fully incremental analysis. International journal of chronic obstructive 16
- 17 pulmonary disease, 7, p.183.