Section A: Clarification on effectiveness data

A1. Priority Question: The patient population in the PRIMA trial (described in Table 15 of the manufacturer's submission) indicates that 118 (10\%) patients had Stage I or Stage 2 disease. Patients with NHL at these stages are not usually considered to have advanced disease and are not usually treated with chemotherapy. Please provide clarification of the rationale for patients with Stage I and 2 disease being recruited into the PRIMA trial.

Response:

Most patients (> 85\%) with follicular lymphoma (FL) have widespread disease at diagnosis (Ann Arbor stage III/IV), including involvement of peripheral and central (abdominal and thoracic) lymph nodes and spleen.

In the small proportion of patients with limited stage I-II disease, radiotherapy (involved or extended field, 30-40 Gy) is the preferred treatment option having a curative potential. However, in stage I-II patients with large tumour burden systemic therapy may be applied as indicated for advanced stages (ie with the occurrence of symptoms including B symptoms, haematopoietic impairment, bulky disease, vital organ compression, ascites, pleural effusion or rapid lymphoma progression) ${ }^{i}$. Please note, this approach is accepted as standard practice in the UK as confirmed by three independent experts (see below).

Following a scientific advice meeting with the Danish and Dutch Medicines Agencies, it was agreed that the PRIMA trial was acceptable with regards to study design and conduct as a label enabling trial to gain marketing authorisation for MabThera maintenance therapy in previously untreated patients with follicular lymphoma responding to induction therapy. Accordingly, patients were eligible for entry into PRIMA if they had a high tumour burden and required initiation of treatment (Stages I-IV), defined by the presence of at least one of the following (GELF) criteria:

- bulky disease defined as a nodal or extranodal (except spleen) mass $>7 \mathrm{~cm}$ in its greater diameter
- B symptoms
- elevated serum lactate dehydrogenase (LDH) or $\beta 2$-microglobulin
- involvement of at least three nodal sites (each with a diameter greater than 3 cm)
- symptomatic splenic enlargement
- compressive syndrome
- pleural/peritoneal effusion

Almost all patients who entered the maintenance/observation phase (98\%) of PRIMA fulfilled one or more of these criteria at study entry. As expected, the great majority of patients (90\%) had stage III/IV disease but 10% of patients had stage I (2\%) or stage II disease (8\%).

Subgroup analyses of efficacy were not performed according to disease stage in the PRIMA study. However, PFS was analyzed in subgroups defined by FLIPI score as
assessed at the start of the induction phase. The FLIPI score is a composite score based on five prognostic factors, one of which is tumour stage (stage $I / I I=0$ adverse prognostic factors, stage III/IV = 1 adverse prognostic factor). Importantly, all FLIPI subgroups of patients in the PRIMA study, including those with a low FLIPI score (01 adverse prognostic factors) benefitted significantly from rituximab maintenance (Figure 9 of our submission; pp 106). This finding strongly suggests that patients with stage I/II disease in the PRIMA study benefitted from maintenance rituximab and that this subgroup of patients should not be excluded from treatment with rituximab maintenance in the future.

For this reason, the proposed licence will support the use of rituximab maintenance in patients with advanced stage (stage III/IV) follicular lymphoma and patients with high tumor burden stage I/II follicular lymphoma, who have responded to first-line therapy.

Opinion from independent UK experts

Dr Christopher McNamara, Consultant haematologist, Royal Free Hospital, London:
"Very few patients with limited stage FL who do not have disease bulk or a mass in a strategic location will require chemotherapy. However, those that do have an accepted indication for treatment if the disease is in discontiguous sites or if the morbidity of radiotherapy is intolerable. The patients that I can think of readily are those that present with a large ($>7 \mathrm{~cm}$) symptomatic abdominal mass but no nodal disease elsewhere and a clear marrow. This patient has limited stage disease but clearly requires chemotherapy, not radiotherapy."

Dr George Follows, Consultant Haematologist, Addenbrookes Hospital, Cambridge:
"I am confident that our practice in the Anglia cancer network reflects standard practice within the UK.

Standard treatment for most patients with stage I follicular lymphoma is involved field radiotherapy. This applies for both asymptomatic as well as symptomatic patients, although the majority of stage I FL patients are relatively symptom free.

However, many patients with symptomatic stage II disease, have features that make radiotherapy less attractive. These include disease in multiple nodal groups that would necessitate large radiation fields, or disease involving areas that are more likely to associate with radiotherapy side effects, such as mesenteric or oropharygeal disease. Of note, there is always the concern with symptomatic stage II patients, that a proportion have in fact been understaged, for a range of potential reasons. I suspect this concern influences clinicians when they decide between chemotherapy or radiotherapy in these cases.

Although I have not seen the exact breakdown of the 118 patients with stage I/II disease that entered the [PRIMA] trial, I strongly suspect that the majority of these patients would have been stage II, and were therefore treated with R-chemotherapy in line with current standard UK practice."
"In the UK we have always taken:

1. Systemic upset (wt loss > 10\% in 6 months and night sweats) due to disease
2. Bone marrow failure
3. Compression syndrome caused by disease - DVT/threatened DVT secondary to bulky iliac or inguinal disease, hydronephrosis secondary to ureteric obstruction by nodal disease, recurrent pleural effusions, ascites from mesenteric/omental disease, extradural cord compression and bowel involvement
as indications to treat. The GELF criteria are slightly more permissive.

In effect localised stage I disease would usually be treated with RT unless bulky or at a difficult site. Stage II disease fulfilling any of the above would usually be treated with RT or systemic chemotherapy as indicated after discussion by an MDT, the usual criteria for chemo would be point 3 above and bulk.

Stage I/II disease would therefore be appropriate for maintenance where a properly constituted MDT considered chemotherapy the appropriate first line therapy. With CT/PET staging some cases would be upstaged anyway from I/II to III/IV."

A2. Priority Question: Section 5.3.1.2.5 (page 67 of manufacturer's submission) is unclear and appears contradictory. Please present this information in a more coherent manner and provide clarification as to:

i) why starting a new anti-lymphocytic treatment was not counted as an
event or as a reason for censoring

Response:

Please note, starting a new anti-lymphocytic treatment was not counted as an event for investigator-assessed progression-free survival (PFS) as PFS is defined as the time from the day of randomization to the date of first documented progressive disease or death from any cause, whichever is earlier. As highlighted above, starting a new anti-lymphoma treatment before documented disease progression was also not counted as a reason for censoring in the investigator-assessed PFS analysis.

Starting a new anti-lymphoma treatment was, however, counted as an event in the secondary endpoint, event-free survival (EFS), which was defined as the time from the day of randomization to the date of first documented progressive disease, initiation of any new anti-lymphoma treatment or death from any cause, whichever is earlier. Progression free survival (progression or death) is considered a more objective endpoint whereas starting a new treatment before progression (as included in EFS) is a more subjective event. Nevertheless, the majority of events in the investigator-assessed EFS analysis were disease progression/relapse events (events in the observation arm versus \square events in the rituximab arm). A total of only \square patients () started a new anti-lymphoma treatment prior to documented disease progression (\square patients in the observation arm, and \square patients in the rituximab arm) (January 14th 2009 cut-off, pp 124 of submission).

The minimal impact of the small number of patients included in the investigatorassessed PFS analysis who started a new anti-lymphoma treatment before disease progression is reflected in the similar hazard ratios for PFS and EFS (PFS HR $=0.50$ [0.39;0.64] p<0.0001; EFS HR = \square. This is also the case for the updated January $15^{\text {th }} 2010$ analysis (PFS HR $=\square$; EFS $\mathrm{HR}=\square \square \square$.

For the CE analysis of PRIMA PFS all patients starting a new lymphocytic treatment before disease progression were censored at start of new therapy ($\mathrm{R}=\square$ and $\mathrm{O}=\square$). This has the effect of reducing the time in PFS more in the R arm as in the observation.

ii) the meaning of 'as images were not collected after the start of a new treatment, patients who started a new anti-lymphoma treatment without IRC-assessed disease progression were censored for the IRC analysis of PFS'

Roche contracted an Independent Review Committee (IRC), BioClinica Inc, to provide an independent assessment of tumour response in the PRIMA trial. This assessment was based on radiographic images with limited clinical information.

In the IRC analysis of PFS, (as per the investigator assessment) initiation of a new anti-lymphoma treatment after randomization to study treatment was not counted as an event nor as a reason for censoring. As specified in the PRIMA protocol, no subsequent CT scans were required following disease progression and patients were followed for survival. In the event of a new subsequent treatment without disease progression, CT scans were also discontinued due the confounding impact of the new treatment. As discussed above, a new anti-lymphoma treatment was started in only of patients without documented disease progression. Accordingly, these patients were censored at the time of their last available scan. To be eligible for assessment by the IRC at least one valid paired radiologist/oncologist assessment was required. Consequently, in the absence of an available CT scan the IRC could not assess a response and patients were declared as non-evaluable. Despite this limitation, which was necessitated by the blinded nature of the IRC review, the hazard ratio values were very similar for the investigator and IRC assessed PFS (Inv PFS HR $=0.50$ [0.39;0.64] p<0.0001; IRC PFS HR $=0.55$ [0.42;0.70] p<0.0001; January 14th 2009 cut-off).
iii) why there appear to be differences in censoring methods between the investigator and IRC assessments

The only difference in censoring methods between the investigator and IRC assessments is described in point ii) above (ie censoring patients for the IRCanalysis of PFS at the time of their last available CT scan).

Please note, in the case of investigator-assessed PFS, although these patients were also censored at the time of their last tumour assessment, this may not necessarily have been a radiological assessment as the investigator may have assessed a response based solely on a physical examination. However, as stated above, despite these limitations the IRC assessed PFS results were very similar to the investigator assessed PFS results. Furthermore, both the investigator-assessed and IRC-assessed PFS benefit were shown to be robust using sensitivity analyses and supportive of each other (section 5.5.2.1.4 of our submission).

A3. Priority Question: In the PRIMA trial, some lymphomas were recorded as having transformed. Please explain i) whether patients whose disease had transformed were followed up and ii) how their data were included in the analysis

In the PRIMA study, a biopsy was obtained at progression, where possible, for central pathological review. Of the 173 patients that progressed on the observation arm 73 patients had samples assessed. From the 91 patients on the rituximab maintenance arm that progressed 41 samples were assessed for transformation.

Please note:
i) There was no difference in the follow up of these patients. Following progression, all patients were followed for their subsequent treatment(s) and survival.
ii) These patients were treated the same as all patients and their progression was counted as an event in the primary analysis. Transformation rate at first progression was a secondary endpoint and is presented in section 5.5.2.2.7 of our submission).

A4. Clinical data used in the economic modelling should be evidenced in the clinical effectiveness section. Therefore, please provide a description of the results for all primary and secondary clinical endpoints from the last data cutoff (June 2010), which is not available in the CSR.

Response:

The operational cut-off for data collection for the updated efficacy and safety analyses was every visit up to and including $15^{\text {th }}$ Jan 2010. Monitoring staff were requested to collect and Source Data Verify every visit that took place up to this date. In turn, Data Management cleaning and Clinical Science review took place on all visits up to this date. Efficacy and safety data from this cut-off date are described in sections 5.5.3 and 5.9.2.13 of our submission respectively and presented in more detail in Table 1 below.

Table 1: Overview of Efficacy Parameters (MITT) $15^{\text {th }}$ Jan 2010 cut-off date

Efficacy Parameter	$\begin{aligned} & \text { Observation } \\ & \mathrm{N}=513 \end{aligned}$	$\begin{aligned} & \text { Rituximab } \\ & \mathrm{N}=505 \end{aligned}$	HR I OR	p-value*
Primary Endpoint: PFS				
Investigator-Assessed PFS				
Median time to event	days			
25th percentile	$\begin{aligned} & \text { days } \\ & \text { months) } \end{aligned}$	days	$\begin{aligned} & \mathrm{HR}= \\ & \square \end{aligned}$	
One-year PFS rate [95\% CI]				
Secondary Endpoints				
Event-free Survival				
Median time to event	$\begin{array}{\|l\|} \hline \text { days } \\ \text { months) } \end{array}$			
25th percentile	$\begin{aligned} & \text { days } \\ & \text { months) } \end{aligned}$	$\begin{aligned} & \text { days } \\ & \text { months) } \end{aligned}$	$\begin{aligned} & \mathrm{HR}= \\ & \square \end{aligned}$	
One-year event-free rate [95\%				

CI]					
Overall Survival					
Median time to event					
25th percentile					
One-year event-free rate [95\%					
CI]					

Primary endpoint

With a median follow-up of 36 months, patients in the rituximab maintenance arm and in the observation arm had disease progression, while \square and
patients, respectively, had died without progression. The 3-year PFS rate was
\% (95\% confidence interval [CI] \quad) in the rituximab maintenance arm and \% ($95 \% \mathrm{Cl}$) in the observation arm (stratified log-rank, (Figure 1A). The risk of progression was , with a hazard ratio [HR] of $\quad(95 \% \mathrm{Cl} \quad$) for the rituximab maintenance arm. Pre-planned analyses of patient subgroups categorized by age, sex, FLIPI score category, induction chemotherapy and response to induction, showed that the effect of rituximab maintenance was \square
Cox regression multivariate analysis, PFS was significantly associated with the
randomization arm () independently of $\square, \square, \square$, and .

Overall, \square patients in the rituximab maintenance arm and \square patients in the observation arm started a new treatment, consisting of a new chemotherapy regimen in and patients, respectively. A in the risk of starting a new anti-lymphoma treatment (HR= ; 95\% Cl) (Figure 1B) or starting a new chemotherapy ($\mathrm{HR}=\square ; 95 \% \mathrm{Cl}$) were observed in the rituximab maintenance arm (Figure 1C). With deaths observed in the rituximab maintenance arm and \square in the observation arm, there was in the risk of death after randomization $(\mathrm{HR}=\square ; 95 \% \mathrm{Cl}$ \square (Figure 1D).

At the end of the maintenance phase of the study, \square (\%) patients evaluated in the rituximab maintenance arm were in CR/CRu, compared with (\%) patients evaluated at the same time in the observation arm. More of the patients who were in PR at the time of randomization converted to CR/CRu after

Figure 1: Kaplan-Meier estimates of outcome measures with rituximab maintenance versus observation. (A) Progression-free survival; (B), time to next anti-lymphoma treatment; (C), time to next chemotherapy; and (D) overall survival from randomization. (A)

Figure 2: Risk of progression with rituximab maintenance versus observation, according to pre-specified subgroups.
\square
FLIPI, follicular lymphoma international prognostic index; R-CHOP , rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone; R-CVP, rituximab, cyclophosphamide, vincristine, and prednisone; R-FCM, rituximab, fludarabine, cyclophosphamide, and mitoxantrone.

Safety and quality of life

Among the 1,009 patients evaluated for safety, adverse events were reported in \square (\%) patients in the rituximab maintenance arm and
patients in the observation arm; severe adverse events were reported in \square

At the end of 2 years of rituximab maintenance or observation, median serum levels
 respectively for IgA, and $\square \mathrm{g} / \mathrm{L}(\square \mathrm{g} / \mathrm{L}(\square)$ and \quad respectively for lgM (evaluated in \square patients in the experimental arm and \quad in the observation arm).

Analysis of quality-of-life scores during observation or maintenance using the FACTG and EORTC-QLQ-C30 scales
. The mean adjusted FACT-G total scores were) (Standard Error $[\mathrm{SE}]=\quad$ in the rituximab maintenance arm and \quad (SE= \quad) in the observation arm (P -value for treatment effect $=\mathrm{D}$). The EORTC QLQ-C30 global health status mean scores were \square (SE= \square) and \square (SE= \square), respectively ($\mathrm{P}=\square$).

Please note, that an additional exploratory data snap-shot was performed in June 2010 on unlocked data for the purpose of providing the most up-to-date analysis that could be used to inform our economic model. The only outputs available from this snap-shot are PFS and OS (N.B. PFS is the only endpoint extrapolated in our model), as presented in the health economic section of our submission and presented again below (Figures 3 and 4). Given the few additional events included in the June 2010 snapshot relative to the Jan 2010 analysis, the HR for PFS in each case are identical (Table 2).

Figure 3: KM PFS Plots for PRIMA (INV ITT; Snapshot June $14^{\text {th }} 2010$)

Figure 4: Duration of Overall Survival in First-Line Maintenance with Rituximab (PRIMA INV ITT; Snapshot June $14^{\text {th }}$ 2010)

Table 2: PRIMA study primary endpoint: Progress-free survival (investigator-assessed MITT

PRIMA clinical data cut off date	Observation $N=513$ Median PFS	Rituximab $N=505$ Median PFS	HR / OR	p-value*
14th January 2009 25 months median -follow-up duration	NE	NE	$\begin{aligned} & 0.50 \\ & {[0.39 ; 0.64]} \end{aligned}$	p <0.0001
15th January 2010 36 months median -follow-up duration				
Snapshot $14^{\text {th }}$ June 2010* 38 months median -follow-up duration				

HR: hazard ratio; OR: odds ratio; NE: not estimable.
*p-values and hazard ratios were calculated using the stratified log-rank test and stratified Cox regression for time-toevent endpoints, respectively. Stratification factors were induction treatment received and response to induction treatment. p-values for response rate were calculated using the χ^{2} test, and odds ratios w ere calculated by using logistic regression (response rate analyses were unadjusted).

A5. With reference to Section 5.4.2, please provide a complete quality assessment for the PRIMA study. It is noted that the table on page 349 of the manufacturer's submission has not been completed.

Response:

Apologies, this table was accidently omitted from the final submission. Please find below.

Trial no. MO18264 (PRIMA)		
Study question	How is the question addressed in the study?	Grade (yes/no/not

		clear/N/A)
Was randomisation carried out appropriately?	Centralised, stratified block randomisation procedure	Yes
Was the concealment of treatment allocation adequate?	Randomization of eligible patients was performed centrally by fax from the GELA randomization center (GELARC) at Hôpital Saint LouisCentre Hayem. The random allocation sequence was generated by an SAS programmer according to the specifications of a biostatistician. The SAS database that was imported in the GELARC randomization tool was not readable. Thus, neither the physicians nor the randomization assistants had access to the random allocation sequence, which was kept by the biostatistics department	Yes.
Were the groups similar at the outset of the study in terms of prognostic factors, for example, severity of disease?	The treatment groups were well balanced with respect to follicular lymphoma international prognostic index (FLIPI) scores (see section 5.3.4, Table 14)	Yes

Were the care providers, participants and outcome assessors blind to treatment allocation? If any of these people were not blinded, what might be the likely impact on the risk of bias (for each outcome)?	PRIMA was an openlabel study, therefore, it is likely that the aforementioned parties were aware of treatment allocation. However, the assessment of follicular lymphoma posttreatment is very objective and it is therefore unlikely that this will have biased results. In addition, an IRC comprising three hemato-oncologists and seven radiologists (including two adjudicators) assessed all patients randomized in the maintenance/observation phase in a blinded manner for response and progression based on computed tomography (CT) scans and reports of pertinent clinical findings (including physical examination and laboratory results) according to the IRC Charter.	No
Were there any unexpected imbalances in drop-outs between groups? If so, were they explained or adjusted for?	263 patients (26\%) discontinued during the maintenance/observation phase (Table 10). More patients in the observation arm than in the rituximab arm withdrew from the study (162 patients vs 101 patients; 32% vs 20\%). See section 5.3.1.2.18 for details.	No
Is there any evidence to suggest that the authors measured more outcomes than they reported?	All pre-defined primary and secondary outcomes have been reported.	No

(i) Did the analysis include an intention-to-	As detailed in section treat analysis? (ii) If so, was this appropriate and were appropriate methods used to	(i) Yes
5.3.1.2.16. Efficacy and		
economic analyses are	(ii) Yes	
account for missing data?	subsequently presented	
	for the intention-to-treat population. This was an appropriate approach in order to preserve the randomisation scheme and avoid selection bias.	
	A sensitivity analysis of investigator-assessed PFS was performed to account for missing data.	
Centre for Reviews and Dissemination (2008) Systematic reviews. CRD's guidance		
for undertaking reviews in health care. York: Centre for Reviews and Dissemination		

Section B: Clarification on cost-effectiveness data

B1. Priority Question: In the economic model, neither age nor response status following induction therapy have been considered as determining factors in treatment efficacy. Please provide Product-Limit Survival tables (e.g. using SAS LIFETEST procedure) from analysing the most recent follow-up PRIMA trial data for progression-free survival (PFS) and consider the following:
I. PFS by treatment arm (maintenance rituximab, and 'watch and wait')
II. PFS by 3 patient populations defined by age and by treatment arm (i.e. 3×2 Kaplan-Meier analyses) as follows:

- first tertile (33\% youngest patients)
- second tertile (33\% mid-age patients)
- third tertile (33\% oldest patients)
III. PFS by 3 patient populations defined by induction response and by treatment arm (i.e. 3×2 Kaplan-Meier analyses) as follows:
- complete responders
- partial responders
- unconfirmed complete responders

In each case please provide a Product-Limit Survival table (e.g. using SAS LIFETEST procedure - see example below) showing for each event time:

- time of event from baseline (days)
- product-limit estimate of survival proportion
- standard error of survival proportion
- number of patients failed
- number of patients remaining at risk

In addition for each table please provide the estimated mean survival time from the relevant baseline (i.e. randomization or disease progression) up to the time of last recorded event, together with the standard error of the mean estimate.

Example of output (SAS) required from analyses

The LIFETEST Procedure

Product-Limit Survival Estimates					
SURVIVAL	Survival	Failure	Survival Standard Error	Number Failed	Number Left
0.000	1.0000	0	0	0	62
1.000	.	.		1	61
1.000	0.9677	0.0323	0.0224	2	60
3.000	0.9516	0.0484	0.0273	3	59
7.000	0.9355	0.0645	0.0312	4	58

Product-Limit Survival Estimates				Survival	Failure	Survival Standard Error
SURVIVAL	Number Failed	Number Left				
8.000		.	.	5	57	
8.000	.	.	.	6	56	
8.000	0.8871	0.1129	0.0402	7	55	
10.000	0.8710	0.1290	0.0426	8	54	
SKIP...	0.8548	0.1452	0.0447	9	53	
389.000	0.1010	0.8990	0.0417	52	5	
411.000	0.0808	0.9192	0.0379	54	4	
467.000	0.0606	0.9394	0.0334	3		
587.000	0.0404	0.9596	0.0277	55	2	
991.000	0.0202	0.9798	0.0199	56	1	
999.000	0	1.0000	0	0		

Response:

I. PFS by treatment arm (maintenance rituximab, and 'watch and wait')

The requested tabulation of the data has been provided in Appendix I for rituximab maintenance and 'watch and wait' from the PRIMA trial (June snapshot).

II. PFS by 3 patient populations defined by age and by treatment arm (i.e. 3×2 Kaplan-Meier analyses) as follows:
 - first tertile (33\% youngest patients)
 - second tertile (33\% mid-age patients)
 - third tertile (33\% oldest patients)

Roche provided in the original submission an analysis of the treatment effect by 2 age groups; <60 years and >=60 years. This analysis was predefined in the study protocol and patients were stratified by this patient baseline characteristic. The forest plot illustrating the hazard ratios for PFS with 95% confidence intervals (observation vs rituximab) for pre-specified patient subgroups are shown in figure 9 of the submission.

Roche is unclear to what purpose the ERG would request this bespoke age category evidence, given the pre-specified age related data already provided within the submission.

However Roche has provided an analysis that demonstrates that, irrespective of age a consistent treatment effect is observed in which patients treated with rituximab maintenance experience at least a 30% reduction in the risk of progression. It is important to note here that the analyses are based on a non-randomised limited number of events, patient numbers and any variations may be confounded by other explanatory variables. The odds ratios by age can be seen in the figure below. The table below summarises the event counts and censoring for the 2 arms for each of the 3 age sub-groups requested.

Table 3: PRIMA PFS events (maintenance) by treatment and the age tertiles (Jun 2010 snapshot)

Age range	Observation arm (n=513)		Rituximab arm (n= 505)	
	Event	Censored	Event	Censored
$23-43$ years	44	46	16	57
$44-64$ years	132	167	85	224
$65-85$ years	47	77	36	87

Further details on the number of events per sub-group can be found in appendix 2.
III. PFS by 3 patient populations defined by induction response and by treatment arm (i.e. 3×2 Kaplan-Meier analyses) as follows:

- complete responders
- partial responders
- unconfirmed complete responders

The table showing odds ratios and figure below showing the event rates for the subgroup of patients by induction response category demonstrate that the treatment effect is maintained in the 3 patient populations.

Table 4: PRIMA PFS events (maintenance) by treatment and response to induction (Jun 2010 snapshot)

Induction to response	Observation arm (n=513)			Rituximab arm (n= 505)	
	Event	Censored	Event	Censored	
CR	76	119	46	159	
UCR	75	90	50	105	
PR	72	80	39	100	

Further details can be found in appendix 3.

B2. Priority Question: Rituximab doses are administered based on body surface area (BSA) which is different for women and men. The costs in the manufacturer's submission appear to have not taken these gender differences into account. Please provide BSA summary data (mean, standard deviation and number of patients) for men and women separately for the following five age-related subgroups based on age at randomisation (i.e. 2×5 subgroups):
i) patients aged under 47 years
ii) patients aged 47-52 years
iii) patients aged 53-58 years
iv) patients aged 59-65 years
iv) patients aged 66+ years

Response:

The data requested can found in the table below.

Table 5: Summary statistics for BSA by treatment, gender and age group

TRTC	Sex	AGRP	Obs	Mean	Std Dev	Median	Minimum	Maximum
OBSERVATION	FEMALE	< 47	47	1.69	0.16	1.68	1.37	2.3
		47-52	39	1.78	0.2	1.75	1.51	2.32
		53-58	50	1.69	0.17	1.7	1.22	2.11
		59-65	64	1.72	0.17	1.73	1.33	2.18
		65 +	50	1.63	0.13	1.63	1.27	1.91
	MALE	< 47	75	1.97	0.18	1.96	1.55	2.44
		47-52	36	1.99	0.15	1.99	1.64	2.28
		53-58	48	1.96	0.18	1.96	1.65	2.45
		59-65	47	1.96	0.16	1.96	1.59	2.3
		65 +	57	1.88	0.17	1.9	1.44	2.2
RITUXIMAB	FEMALE	<47	46	1.77	0.19	1.72	1.45	2.31
		47-52	27	1.73	0.14	1.75	1.51	2.12
		53-58	38	1.7	0.17	1.68	1.43	2.18
		59-65	64	1.76	0.17	1.74	1.46	2.21
		$65+$	60	1.67	0.18	1.68	1.28	2.1
	MALE	< 47	61	1.98	0.18	1.98	1.68	2.67
		47-52	31	1.99	0.18	1.97	1.67	2.49
		53-58	65	1.94	0.17	1.96	1.38	2.28
		59-65	63	1.96	0.18	1.94	1.58	2.47
		$65+$	50	1.88	0.16	1.85	1.47	2.27

Additionally we provide the patient height and weight by gender in the table below.
Table 6: Summary statistics for height and weight by gender

Sex	\mathbf{N}	Label	Mean	Std Dev
FEMALE	485	Height in cm	161.44	6.75
		Weight in kg	67.83	14.39
MALE	533	Height in cm	175.01	7.3
		Weight in kg	79.68	13.34

B3. In Section 6.3.6 some variables used in the economic model are listed in table 98. Please indicate if any other variables are missing from this list (including deterministic variables) and provide their values (and appropriate estimates of uncertainty), range (distribution) and source.

Response:

A full list of variables can be found in appendix 4.

B4. Section 6.4.11 states that patient experience is described in section 6.4.1. This section however does not provide information for each health state. Please provide more information on the impact of NHL on a patient's quality of life for each health state included in the economic model.

Response:

The course of progressive follicular lymphoma is typified by sequential remissions and relapses, disease dissemination, and eventual resistance to current treatment approaches. There is a paucity of relevant literature and research on the quality of life of patients with follicular lymphoma over the course of their disease and impact of different states such progression free (PF) and progressive disease (PD) following first line and subsequent lines of treatment.

Progression free survival (PF1) - It has been assumed that HRQoL remains constant in this state of disease. According to Pettengell and colleagues, newly diagnosed patients either undergoing watch and wait or active treatment had highest mean scores on patient related outcomes (FACT-LYM) score. The authors hypothesised this is because these patient have yet to experience relapse following successful treatment. It is therefore logical to assume that these patients who are progress free following first successful treatment will have higher utility values compared to those who have experience relapse.

Progression free survival (PF2) - It has been assumed that HRQoL remains constant in this state of disease however utility values will be lower than those in
PF1. Pettengell and colleagues reported that it seems likely that each time a patients relapses they are likely to experience a worse HRQoL. Issues such as uncertainty (especially in relation to relapse), perceived lack of control, feelings of dependency, anxiety and depression are also important in a recurrent cancer such as follicular lymphoma.

Progressive disease (PD) - It has been assumed that HRQoL remains constant in this state of disease however due to lack of response to the treatment or worsening disease, these patients have the lower utility values compared to those in if progression free states.

B5. In Section 6.5.1 (page 280 of manufacturer's submission), year 1-2 costs in table 104 have been correctly calculated over 24 months but the caption states this is calculated over a 12 month period ("year 1-2 (12 months))". Please confirm the time period for these calculations.

Response:

The parentheses in this table should indeed read "(24 months)".

B6. In Section 6.7.3, Markov traces for the intervention and comparator arms in tables 115 and 116 appear identical. Please confirm whether this information is correct.

Response:

This was a typographical error. Table 115 of the submission is correct. Table 116 is incorrect the correct version of this table can in appendix 5 .

B7. The values for mean life years appear to not be discounted in table 117 (i.e. they are the same as the undiscounted values in table 111). Please confirm the correct values for these tables and also confirm that the values in tables 112 119 are also correct.

Response:

This is a typographical error. Values in table 111 are discounted. The correct version of tables 112-119 are given in appendix 5 .

B8. In table 123, the mean life years (comparator arm) is 4.579 whereas in table 118, this figure is listed as 4.597. Please confirm the correct value.

Response:

The correct value for the life years gained in table 118 for the comparator arm is 4.597 as per table 118

B9. Please provide sensitivity analyses that will examine how sensitive the ICERs are to alternative assumptions on subsequent lines of treatments.

Response:

There are 4 variables that determine the efficacy of subsequent treatments in $2^{\text {nd }}$ line. These are defined by

1. the probability of progressing from PF2 to PD when patients receive R-chemoR in $2^{\text {nd }}$ line (prr)
2. the probability of progressing from PF2 to PD when patients receive chemotherapy (induction) followed by observation in $2^{\text {nd }}$ line (poo)
3. the probability of dying in PD when patients had received R-chemo- R in $2^{\text {nd }}$ line (p2dr)
4. the probability of dying in PD when patients had received chemotherapy (induction) followed by observation in $2^{\text {nd }}$ line ($p 2 d o$)

A range for these variables was obtained by running PSA for 500 iterations and determining the confidence intervals for each variable.

Table 7: Variables determining subsequent treatment efficacy and confidence intervals (monthly probabilities)

Variables	prr	poo	p2dr	p2do
Confidence intervals	$(0.016,0.023)$	$(0.047,0.064)$	$(0.020,0.025)$	$(0.044,0.056)$

The ranges defined by the confidence intervals in the table above were tested in a one way sensitivity analysis.

The resulting ICERs can be found in the table below.

	prr	poo	p2dr	p2do
Base-case probability	0.01954	0.05510	0.02219	0.04996

assumption	15,978			
ICER (£ per QALY)				
Upper limit probability assumption	0.023	0.064	0.025	0.056
ICER (£ per QALY)	15,932	15,862	15,951	15943
lower limit probability assumption	0.016	0.047	0.020	0.044
ICER (£ per QALY)	$\mathbf{1 6 , 0 4 8}$	$\mathbf{1 6 , 1 2 0}$	$\mathbf{1 6 , 0 0 5}$	$\mathbf{1 6 , 0 2 0}$

The analysis above demonstrates that the model is not sensitive to the assumptions relating to efficacy of subsequent treatments in the treatment algorithm. This is mainly because the same efficacy assumptions have been applied in the 2 arms of the model (intervention or comparator).

Appendix 1:

\square

NOTE: The marked survival times are censored observations.

Summary Statistics for Time Quartile Estimates			
Point 95\% Confidence Interval			
Percent	Estimate	[Lower	Upper)
75			
50	48.3614	42.0862	
25	16.9199	14.3901	21.3881
Mean Standard Error			
	4.1111	0.7655	

The LIFETEST Procedure

Stratum 2: TRTC = RITUXIMAB

Product-Limit Survival Estimates

The LIFETEST Procedure

Summary Statistics for Time Variable PFSTIME

Quartile Estimates

Point			
Percent	Estimate	Confidence Interval	
	[Lower	Upper)	
75			
50			
25	36.7639	31.2772	40.9692
Mean	Standard Error		
38.8844	0.6443		

NOTE: The mean survival time and its standard error were underestimated because the largest observation was censored and the estimation was restricted to the largest event time.

Summary of the Number of Censored and Uncensored Values

Stratum	TRTC \quad Total	Failed	Censored	Percent								
Censored							$]$	1				290
:---	:---	:---	:---	:---								
2	OBSERVATION	513	223	56.53								
Total	RITUXIMAB	505	137	368								
72.87												
			1018	360								

Appendix 2:

PFS Status: Disposition of Patients (Maintenance) by Treatment and Age Group

Appendix 3:
PFS Status: Disposition of Patients (Maintenance) by Treatment and Induction Response

MabThera Study MO18264(PRIMA) in NHL

The FREQ Procedure					
Cumulative TRTC Frequency	$\begin{aligned} & \text { Cumulative } \\ & \text { A_IRSP } \\ & \text { Percent } \end{aligned}$	PFSCEN	Frequency	Percent	
OBSERVATION 11.77	COMPLETE RESPONSE	Censored	119	11.77	119
$\begin{aligned} & \text { OBSERVATION } \\ & 19.29 \end{aligned}$	COMPLETE RESPONSE	Event	76	7.52	195
$\begin{aligned} & \text { OBSERVATION } \\ & 27.20 \end{aligned}$	PARTIAL RESPONSE	Censored	80	7.91	275
OBSERVATION 34.32	PARTIAL RESPONSE	Event	72	7.12	347
OBSERVATION 43.22	UNCONFIRMED COMPLETE RESPONSE	Censored	90	8.90	437
OBSERVATION 50.64	UNCONFIRMED COMPLETE RESPONSE	Event	75	7.42	512
$\begin{aligned} & \text { RITUXIMAB } \\ & 66.37 \end{aligned}$	COMPLETE RESPONSE	Censored	159	15.73	671
$\begin{aligned} & \text { RITUXIMAB } \\ & 70.92 \end{aligned}$	COMPLETE RESPONSE	Event	46	4.55	717
$\begin{aligned} & \text { RITUXIMAB } \\ & 80.81 \end{aligned}$	PARTIAL RESPONSE	Censored	100	9.89	817
$\begin{aligned} & \text { RITUXIMAB } \\ & 84.67 \end{aligned}$	PARTIAL RESPONSE	Event	39	3.86	856
RITUXIMAB 95.05	UNCONFIRMED COMPLETE RESPONSE	Censored	105	10.39	961
$\begin{aligned} & \text { RITUXIMAB } \\ & 100.00 \end{aligned}$	UNCONFIRMED COMPLETE RESPONSE	Event	50	4.95	1011

Appendix 4:		
Variab		
Name	Excel Sheet	Description
c_ae	='Adverse	
new	events'!\$AC\$6	Cost of AE's in New Therapy arm
c_ae_	='Adverse	
com	events'!\$P\$6	Cost of AE's in Comparator arm
ompes	=Exponential!\$B	
t_e	\$11:\$C\$13	parameter of exponential functions (see Exponential sheet)
Ofpest	=Exponential!\$B	
_e	$\begin{aligned} & \text { \$5:\$C\$7 } \\ & =\text { Exponential!\$C } \end{aligned}$	parameter of exponential functions (see Exponential sheet)
olce	\$30	parameter of exponential functions (see Exponential sheet)
	=Exponential!\$C	
ogce	\$31	parameter of exponential functions (see Exponential sheet)
omcm	=Exponential!\$D	
at_e	\$11:\$F\$13	parameter of exponential functions (see Exponential sheet)
Ofcma	=Exponential!\$D	
t_e	\$5:\$F\$7 =Exponentiall\$G	parameter of exponential functions (see Exponential sheet)
olne	\$30	parameter of exponential functions (see Exponential sheet)
	=Exponential!\$G	
ogne	\$31	parameter of exponential functions (see Exponential sheet)
Mpest _e	=Exponential!\$J \$11•KK\$13	Parameter estimates: exponential (MFU data) - not used in
fpest_	=Exponential!\$J	
e	\$5:\$K\$7	Parameter estimates: exponential (full data)
	=Exponential!\$K	
plce	\$30	parameter of exponential functions (see Exponential sheet)
	=Exponential!\$K	
pgce	\$31	parameter of exponential functions (see Exponential sheet)
Mcmat _e	=Exponential!\$L \$11:\$N\$13	Covariance matrix: exponential (median follow up data (MFU) data) - not used in model
fcmat	=Exponential!\$L	(MFU) data) - not used in model
e	\$5:\$N\$7	Covariance matrix: exponential (full data)
	=Exponential!\$O	
plne	\$30	parameter of exponential functions (see Exponential sheet)
	=Exponential!\$O	
pgne	\$31	parameter of exponential functions (see Exponential sheet)
ompes	=Gamma!\$B\$11	
t_ga	:\$C\$14	parameter of gamma functions (see Gamma sheet)
Ofpest _ga	=Gamma!\$B\$5:	
	\$C\$8	parameter of gamma functions (see Gamma sheet)
olcga	=Gamma!\$C\$38	parameter of gamma functions (see Gamma sheet)
ogcga	=Gamma!\$C\$39	parameter of gamma functions (see Gamma sheet)
odcga	=Gamma!\$C\$40	parameter of gamma functions (see Gamma sheet)
omcm	=Gamma!\$D\$11	
at_ga	:\$G\$14	parameter of gamma functions (see Gamma sheet)
Offma	=Gamma!\$D\$5:	
t_ga	\$G\$8	parameter of gamma functions (see Gamma sheet)
od	=Gamma!\$E\$23	parameter of gamma functions (see Gamma sheet)
og	=Gamma!\$E\$24	parameter of gamma functions (see Gamma sheet)
ok	=Gamma!\$E\$25	parameter of gamma functions (see Gamma sheet)
ogd	=Gamma!\$E\$26	parameter of gamma functions (see Gamma sheet)
obc	=Gamma!\$E\$27	parameter of gamma functions (see Gamma sheet)
obn	=Gamma!\$E\$28	parameter of gamma functions (see Gamma sheet)
opd	=Gamma!\$E\$30	parameter of gamma functions (see Gamma sheet)
opg	=Gamma!\$E\$31	parameter of gamma functions (see Gamma sheet)
opk	=Gamma!\$E\$32	parameter of gamma functions (see Gamma sheet)

opgd	=Gamma!\$E\$33	parameter of gamma functions (see Gamma sheet)
opbc	=Gamma!\$E\$34	parameter of gamma functions (see Gamma sheet)
opbn	=Gamma!\$E\$35	parameter of gamma functions (see Gamma sheet)
olnga	=Gamma!\$G\$38	parameter of gamma functions (see Gamma sheet)
ognga	=Gamma!\$G\$39	parameter of gamma functions (see Gamma sheet)
odnga	=Gamma!\$G\$40	parameter of gamma functions (see Gamma sheet)
Mpest _ga	$\begin{aligned} & =\text { Gamma!\$I\$11: } \\ & \text { \$J\$14 } \end{aligned}$	Parameter estimates: gamma (MFU data) - not used in model
fpest_	=Gamma!\$I\$5:\$	
ga	J\$8	Parameter estimates: gamma (full data)
plcga	=Gamma!\$J\$38	parameter of gamma functions (see Gamma sheet)
pgcga	=Gamma!\$J\$39	parameter of gamma functions (see Gamma sheet)
pdcga	=Gamma!\$J\$40	parameter of gamma functions (see Gamma sheet)
Mcmat _ga	=Gamma!\$K\$11	
	:\$N\$14	Covariance matrix: gamma (MFU data) - not used in model
fcmat	=Gamma!\$K\$5:	
ga	\$N\$8	Covariance matrix: gamma (full data)
d	=Gamma!\$L\$23	d- parameter of gamma functions (see Gamma sheet)
g	=Gamma!\$L\$24	parameter of gamma functions (see Gamma sheet)
k	=Gamma!\$L\$25	parameter of gamma functions (see Gamma sheet)
gd	=Gamma!\$L\$26	parameter of gamma functions (see Gamma sheet)
bc	=Gamma!\$L\$27	parameter of gamma functions (see Gamma sheet)
bn	=Gamma!\$L\$28	parameter of gamma functions (see Gamma sheet)
pd	=Gamma!\$L\$30	parameter of gamma functions (see Gamma sheet)
pg	=Gamma!\$L\$31	parameter of gamma functions (see Gamma sheet)
pk	=Gamma!\$L\$32	parameter of gamma functions (see Gamma sheet)
pgd	=Gamma!\$L\$33	parameter of gamma functions (see Gamma sheet)
pbc	=Gamma!\$L\$34	parameter of gamma functions (see Gamma sheet)
pbn	=Gamma!\$L\$35	parameter of gamma functions (see Gamma sheet)
plnga	=Gamma!\$N\$38	parameter of gamma functions (see Gamma sheet)
pgnga	=Gamma!\$N\$39	parameter of gamma functions (see Gamma sheet)
pdnga	=Gamma!\$N\$40	parameter of gamma functions (see Gamma sheet)
ompes	=Gompertz!\$B\$	
t_go	11:\$C\$13	parameter of gompertz functions (see Gompertz sheet)
Ofpest _go	=Gompertz!\$B\$	
	5:\$C\$7	parameter of gompertz functions (see Gompertz sheet)
omcm	=Gompertz!\$D\$	
at_go	11:\$F\$13	parameter of gompertz functions (see Gompertz sheet)
Ofcma	=Gompertz!\$D\$	
t_go	5:\$F\$7	parameter of gompertz functions (see Gompertz sheet)
Mpest go	$\begin{aligned} & =\text { Gompertz!\$I\$1 } \\ & \text { 1:\$J\$13 } \end{aligned}$	Parameter estimates: gompertz (MFU data) - not used in model
fpest	=Gompertz!\$\|\$5	
go	:\$J\$7	Parameter estimates: gompertz (full data)
	=Gompertz!\$J\$3	
plcgo		parameter of gompertz functions (see Gompertz sheet)
	=Gompertz!\$J\$3	
pgcgo	1	parameter of gompertz functions (see Gompertz sheet)
Mcmat _go fcmat_ go	=Gompertz!\$K\$ 11.\$M\$13	ix: gompertz (MFU data) - not used in model
	=Gompertz!\$K\$	Covariance matrix: gompertz (MFU data) - not used in model
	5:\$M\$7	Covariance matrix: gompertz (full data)
	=Gompertz!\$N\$	
plngo	30	parameter of gompertz functions (see Gompertz sheet)
	=Gompertz!\$N\$	
pgngo	31	parameter of gompertz functions (see Gompertz sheet)
Pfsdth	$=' K M$ PFS'ISM\$11	New Therapy arm: monthly probability of death while in PFS
pfs2dt	='KM	New Therapy arm: monthly probability of death while in PFS
h_new	PFS'!\$M\$48	(2L)

Pfsdth _com	$\begin{aligned} & \text { ='KM } \\ & \text { PFS'!\$P\$11 } \end{aligned}$	Comparator arm: monthly probability of death while in (1L)
$\overline{\mathrm{pfs}} 2 \mathrm{dt}$	='KM	Comparator arm: monthly probability of death while in PFS(2L)
h_com	PFS'!\$P\$48	
	='Log	
ompes	Logistic'!\$B\$11:	
t_II	\$C\$13	parameter of log logistic functions (see log logistic sheet)
	='Log	
Ofpest	Logistic'!\$B\$5:\$	
II	C\$7	parameter of log logistic functions (see log logistic sheet)
	='Log	
olcl	Logistic'!\$C\$30	parameter of log logistic functions (see log logistic sheet)
	='Log	
ogcl	Logistic'!\$C\$31	parameter of log logistic functions (see log logistic sheet)
	='Log	
omcm at_II	Logistic'!\$D\$11:\$F\$13	
		parameter of log logistic functions (see log logistic sheet)
	='Log	
Ofcma	Logistic'!\$D\$5:\$	
t_II	F\$7	parameter of log logistic functions (see log logistic sheet)
	='Log	
olnl	Logistic'!\$G\$30	parameter of log logistic functions (see log logistic sheet)
	='Log	
ognl	Logistic'!\$G\$31	parameter of log logistic functions (see log logistic sheet)
	='Log	
Mpest _II	Logistic'!\$J\$11:\$	Parameter estimates: log logistic (MFU data) - not used in model
	$\begin{aligned} & \text { K\$13 } \\ & =\text { 'Log } \end{aligned}$	
$\begin{aligned} & \text { fpest_I } \\ & \text { \| } \end{aligned}$	Logistic'!\$J\$5:\$	
	K\$7	Parameter estimates: log logistic (full data)
	='Log	
plcl	Logistic'!\$K\$30	parameter of log logistic functions (see log logistic sheet)
	='Log	
pgcl	Logistic'!\$K\$31	parameter of log logistic functions (see log logistic sheet)
	='Log	
Mcmat II	Logistic'!\$L\$11:	Covariance matrix: log logistic (MFU data) - not used in model
	\$N\$13	
	='Log	
fcmat_ II	Logistic'!\$L\$5:\$	
	N\$7	Covariance matrix: log logistic (full data)
	='Log	
plnl	Logistic'!\$O\$30	parameter of log logistic functions (see log logistic sheet)
	='Log	
pgnl	Logistic'!\$O\$31	parameter of log logistic functions (see log logistic sheet)
	='Log	
ompes	Normal'!\$B\$11:\$	
t_In	C\$13	parameter of log normal functions (see log normal sheet)
	='Log	
Ofpest _In	Normal'!\$B\$5:\$	
	C\$7	parameter of log normal functions (see log normal sheet)
	='Log	
olcn	Normal'!\$C\$30	parameter of log normal functions (see log normal sheet)
	='Log	
ogen	Normal'!\$C\$31	parameter of log normal functions (see log normal sheet)
	='Log	
omcm at_In	Normal'!\$D\$11:	
	\$F\$13	parameter of log normal functions (see log normal sheet)
	='Log	
Offma	Normal'!\$D\$5:\$	
t_ln	F\$7	parameter of log normal functions (see log normal sheet)

olnn	='Log	parameter of log normal functions (see log normal sheet)
	$\begin{aligned} & \text { Normal'!\$G\$30 } \\ & =1 \text { I } 0 \text { a } \end{aligned}$	
ognn	Normal'!\$G\$31 ='Log	parameter of log normal functions (see log normal sheet)
$\begin{aligned} & \text { mpest } \\ & \text { _In } \end{aligned}$	$\begin{aligned} & \text { Normal'!\$J\$11:\$ } \\ & \text { K\$13 } \end{aligned}$	Parameter estimates: log normal (MFU data) - not used in model
	='Log	
fpest_l	Normal'!\$J\$5:\$K	
n	\$7	Parameter estimates: log normal (full data)
	='Log	
plen	Normal'!\$K\$30	parameter of log normal functions (see log normal sheet)
	='Log	
pgen	Normal'!\$K\$31 ='Log	parameter of log normal functions (see log normal sheet)
momat _In	Normal'!\$L\$11:\$	Covariance matrix: log normal (MFU data) - not used in model
	N\$13	
	='Log	
$\begin{aligned} & \text { fcmat_ } \\ & \text { In } \end{aligned}$	Normal'!\$L\$5:\$	
	N\$7	Covariance matrix: log normal (full data)
	='Log	
plnn	Normal'!\$O\$30	parameter of log normal functions (see log normal sheet)
	='Log	
pgnn	Normal'!\$O\$31	parameter of log normal functions (see log normal sheet)
psa_s	='Model	
w	Inputs'!\$AB\$4	Probabilistic senstivity analysis switch (true or false)
	='Model	
psa	Inputs'!\$AB\$5	Probabilistic senstivity analysis switch (1 or 0)
	Inputs'!\$B\$75	e of study (header on al
newna	='Model	
me	Inputs'!\$B\$76	name of New Therapy
comna	='Model	
me	Inputs'!\$B\$77	name of comparator
compa	='Model	
re	Inputs'!\$C\$79	Not used in model dose variable 1 = Planned Include wastage, 2 = Planned
	='Model	Exclude wastage, 3 = Actual Include wastage, $4=$ Actual
dose	Inputs'!\$C\$80	Exclude wastage
t_horiz	='Model	
on	Inputs'!\$C\$82	model time horizon (see Model Menu dropdown)
nr_sim	='Model	
ulate	Inputs'!\$C\$83	Number of simulations
	='Model	
s_com	Inputs'!\$C\$84	sample size Comparator arm
	='Model	
s_new	Inputs'!\$C\$85	sample size New therapy arm distribution variable ($1=$ Weibull, $2=$ exponential, $3=\log$ logistic, $4=\log$ normal, $5=$ gompertz, $6=$ gamma, $7=K M)$
	='Model	
distn	Inputs'!\$C\$86	
	='Model	
cyclen cyclen	Inputs'!\$C\$87	Cycle length (1st line)
	='Model	
day2m	Inputs'!\$C\$88	Cycle length (2nd line)
	='Model	
on cyc2m	Inputs'!\$C\$89	Conversion day to month (30.4375 days = 1 month)
	='Model	
on cyc2m	Inputs'!\$C\$90	Cycle to month value in 1st line maintenance
	='Model	
on2	Inputs'!\$C\$91	Cycle to month value in 2nd line maintenance
ful_mf	='Model	Switch parameter: Use Full or truncated data (not used in

u	Inputs'!\$C\$92 ='Model	model; only full data is used due to degree of censoring)
age	Inputs'!\$E\$19	age of patient
bsa_n	='Model	
ew	Inputs'!\$E\$22	Average Body Surface area (all patients)
c_drug	='Model	
_new	Inputs'!\$E\$27	Cost of Rituximab
c_adm	='Model	
_1	Inputs'!\$E\$32	Cycle 1 cost of adminstering Rituximab
c_adm	='Model	
2	Inputs'!\$E\$33	Subsequent costs of administering Ritixuimab (cycle 2-12)
c_rcho	='Model	
p	Inputs'!\$E\$36 ='Model	Cost of R-CHOP induction
c_rcvp	Inputs'!\$E\$37 ='Model	Cost of R-CVP induction
C_rfcm	Inputs'!\$E\$38	Cost of R-FCM induction
c_cho	='Model	
p	Inputs'!\$E\$39 ='Model	Cost of CHOP induction
c_cvp	Inputs'!\$E\$40 ='Model	cost of CVP Induction
c_fcm	Inputs'!\$E\$41 ='Model	Cost of FCM induction
c_pfs	Inputs'!\$E\$45 ='Model	Monthly Supportive care cost in PFS (1L) : Rituximab arm
c_pfso	Inputs'!\$E\$47 ='Model	Montly Supportive care cost in PFS (1L): Observation arm
c_pfs2	Inputs'!\$E\$49 ='Model	Monthly Supportive care cost in PFS (2L) - both arms
cProg ocPro	Inputs'!\$E\$51 ='Model	Monthly Support care cost in Progression
g	Inputs'!\$E\$53 ='Model	Progression supportive care costs
u_PFS	Inputs'!\$E\$56 ='Model	Utility value: Progression Free (1st line)
pu_pfs	Inputs'!\$E\$57 ='Model	PFS (1L) utility: probabilistic value
u_pfs2	Inputs'!\$E\$58	Utility value: Progression Free (2nd line)
pu_pfs	='Model	
2	Inputs'!\$E\$59 ='Model	PFS (2L) utility: probabilistic value
u_prog	Inputs'!\$E\$60	Utility value: Progressive state
pu_pro	='Model	
g	Inputs'!\$E\$61 ='Model	Progression utility: probabilistic value
disc_c	Inputs'!\$E\$63 ='Model	Discount rate: Costs
disc_u	Inputs'!\$E\$64 ='Model	Discount rate: Efficacy
wtp	Inputs'!\$E\$66 ='Model	Willingness to pay value
pc_pfs curren	Inputs'!\$E\$69 ='Model	New therapy PFS (1L) costs: probabilistic value
cy	Inputs'!\$E\$7	Currency symbol
pc_pfs	='Model	Comparator PFS (1L) supportive care costs: probabilistic
0	Inputs'!\$E\$70	value
pc_pfs	='Model	
2	Inputs'!\$E\$71	PFS (2L) supportive care costs: probabilistic value
pc_pro	='Model	Progression supportive costs New therapy arm: probabilistic

$\begin{aligned} & \mathrm{g} \\ & \mathrm{opc} _\mathrm{pr} \end{aligned}$$\mathrm{og}$	Inputs'!\$E\$72	value
	='Model	Progression supportive costs Comparator arm: probabilistic
	Inputs'!\$E\$73	value
	='Mortality Table UK'!\$B\$6:\$C\$10	
t_mort	6	age vector (column B) of the Mortality table sheet
	='Post-Prog	
	Treatments'!\$H\$	Cost of post progression therapies (see post progression
pptx	2	treatments sheet)
psa1	='Results	
sw	Table'!\$Z\$5	Probabilistic senstivity analysis switch (true or false)
	='Results	
psa1	Table'!\$Z\$6	Probabilistic senstivity analysis switch (1 or 0)
	='Transition	
	Probabilities'!\$D	proportion of patients that will transition from rituximab (1L) to
r_2_r	\$10	Rituximab (2L)
	='Transition	
	Probabilities'!\$D	proportion of patients that will transition from observation (1L)
o_2_r	\$11	to Rituximab (2L)
	='Transition	
	Probabilities'!\$E	proportion of patients that will transition from rituximab (1L) to
r_2_0	\$10	observation (2L)
	='Transition	
	Probabilities'!\$E	proportion of patients that will transition from observation (1L)
0_2_0	\$11	to observation (2L)
	='Transition	
	Probabilities'!\$F	Monthly transition probability: Transitioning from Rit (2L) to
prr	\$56	Progression given Rit (1L)
	='Transition	
	Probabilities'!\$F	Monthly transition probability: Transitioning from Rit (2L) to
por	\$58	Progression given Obs (1L)
	='Transition	
	Probabilities'!\$F	Monthly transition probability: Transitioning from Progression
p2dr	\$63	to death given Rit (2L)
	='Transition	
	Probabilities'!\$G	Monthly transition probability: Transitioning from Obs (2L) to
pro	\$56	Progression given Rit (1L)
	='Transition	
	Probabilities'!\$G	Monthly transition probability: Transitioning from Obs (2L) to
poo	\$58	Progression given Obs (1L)
	='Transition	
	Probabilities'!\$G	Monthly transition probability: Transitioning from Progression
p2do	\$63	to death given Obs (2L)
ompes	=Weibull!\$B\$11:	
t_w ofpest	\$C\$13	parameter of weibull function (see weibull sheet)
	=Weibull!\$B\$5:\$	
_w	C\$7	parameter of weibull function (see weibull sheet)
olcw	=Weibull!\$C\$30	parameter of weibull function (see weibull sheet)
ogcw	=Weibull!\$C\$31	parameter of weibull function (see weibull sheet)
omcm at w	=Weibull!\$D\$11:	
	\$F\$13	parameter of weibull function (see weibull sheet)
ofcmat	=Weibull!\$D\$5:\$	
_w	F\$7	parameter of weibull function (see weibull sheet)
olnw	=Weibull!\$G\$30	parameter of weibull function (see weibull sheet)
ognw	=Weibull!\$G\$31	parameter of weibull function (see weibull sheet)
mpest _w	=Weibull!\$I\$11:	Parameter estimates: weibull (MFU data) - not used in
	\$J\$13	model
fpest_	=Weibull!\$1\$5:\$J	
w plcw	\$7	Parameter estimates: weibull (full data)
	=Weibull!\$J\$30	parameter of weibull function (see weibull sheet)

pgcw	$=$ Weibull!\$J\$31	parameter of weibull function (see weibull sheet)
mcmat	$=$ Weibull!\$K\$11:	
w	$\$ M \$ 13$	Covariance matrix: weibull (MFU data) - not used in model
fcmat_	$=$ Weibull!\$K\$5:\$	
w	M\$7	Covariance matrix: weibull (full data)
plnw	$=$ Weibull!\$N\$30	parameter of weibull function (see weibull sheet)
pgnw	$=$ Weibull!\$N\$31	parameter of weibull function (see weibull sheet)

Appendix 5:

Correct version of tables 112-119

Table 1128: Summary of model results compared with clinical data (comparator observation)

Outcome	Clinical trial result	Model result (mean years)
Progression-free survival PF1	42.09 months median PFS	$\mathbf{4 . 5 9 7}$
Progression-free survival PF2 with R-chemo-R	N/A	2.257
Progression-free survival PF2 with chemo-obs	N/A	0.219
Progressed survival PD with R- chemo-R in 2L	N/A	$\mathbf{1 . 7 1 7}$
Progressed survival PD with R- chemo-obs in 2L	N/A	$\mathbf{0 . 2 2 8}$
Overall survival	NA	$\mathbf{9 . 0 1 7}$

(Half-cycle corrected results, discounted)
Table 113: Markov trace of survival for the intervention arm (R -maintenance)

year	PF1	PF2-(R- chemo-R)	PD - (R- chemo-R in PF2)	PF2-(R- chemo- obs)	PD (R- chemo- obs in PF2)	Death
0	0.996	0.004	0.000	0.000	0.000	0.996
1	0.871	0.070	0.008	0.008	0.002	0.871
2	0.762	0.112	0.025	0.010	0.006	0.762
5	0.510	0.149	0.075	0.009	0.010	0.510
10	0.184	0.148	0.114	0.007	0.009	0.184
15	0.062	0.074	0.087	0.002	0.004	0.062
20	0.020	0.029	0.045	0.001	0.001	0.020
25	0.007	0.009	0.019	0.000	0.000	0.007

*Half-cycle corrected and discounted values
Table 114: Markov trace of survival for the comparator arm (observation)

year	PF1	PF2 - (R- chemo-R)	PD-(R- chemo-R in PF2)	PF2 - (R- chemo- obs)	PD (R- chemo- obs in PF2)	Death
0	0.992	0.006	0.000	0.001	0.000	0.000
1	0.799	0.116	0.013	0.023	0.007	0.042
2	0.643	0.177	0.040	0.029	0.017	0.094
5	0.000	0.206	0.112	0.021	0.025	0.636
10	0.112	0.117	0.118	0.008	0.012	0.634
15	0.038	0.050	0.070	0.002	0.004	0.837
20	0.012	0.018	0.032	0.001	0.001	0.935
25	0.004	0.005	0.013	0.000	0.000	0.977

*Half-cycle corrected and discounted values

Table 115: Markov trace of accrued utility for the intervention arm (R-maintenance)

year	PF1	PF2-(R- chemo-R)	PD - (R- chemo-R in PF2)	PF2 - (R- chemo-obs)	PD (R- chemo-obs in PF2)

0	0.876	0.003	0.000	0.000	0.000
1	0.767	0.056	0.005	0.006	0.001
2	0.671	0.088	0.015	0.008	0.004
5	0.449	0.118	0.047	0.007	0.006
10	0.162	0.117	0.070	0.006	0.006
15	0.054	0.059	0.054	0.002	0.002
20	0.018	0.023	0.028	0.001	0.001
25	0.006	0.007	0.012	0.000	0.000

*Half-cycle corrected and discounted values

Table 116: Markov trace of accrued utility for the comparator arm (observation)

year	PF1	PF2 - (R- chemo-R)	PD - (R- chemo-R in PF2)	PF2 - (R- chemo-obs)	PD (R- chemo-obs in PF2)
0	0.873	0.005	0.000	0.001	0.000
1	0.703	0.092	0.008	0.018	0.004
2	0.566	0.140	0.025	0.023	0.011
5	0.000	0.163	0.069	0.017	0.015
10	0.099	0.092	0.073	0.006	0.007
15	0.033	0.039	0.043	0.002	0.002
20	0.011	0.014	0.020	0.001	0.001
25	0.004	0.004	0.008	0.000	0.000

*Half-cycle corrected and discounted values

Tables 117, 118 and 119 are correct.
${ }^{i}$ Dreyling M. Newly diagnosed and relapsed follicular lymphoma: ESMO Clinical Recommendations for diagnosis, treatment and follow up. Annals of Oncology 2010; 21 (supp 5): v181-v183

