Osimertinib with pemetrexed and platinum-based chemotherapy for untreated EGFR mutation-positive advanced non-small-cell lung cancer

Technology appraisal committee D [03 October 2024]

Chair: Megan John

Lead team: Paul Caulfield, Sofia Dias, Craig Cook

External assessment group: University of Bristol Technology Assessment Group

Technical team: George Millington, Albany Chandler, Ian Watson

Company: AstraZeneca

© NICE 2024. All rights reserved. Subject to Notice of rights.

For screen – contains redacted information

Osimertinib with pemetrexed and platinum-based chemotherapy for untreated EGFR mutation-positive advanced non-small-cell lung cancer

- ✓ Background and key issues
- Clinical effectiveness
- Modelling and cost effectiveness
- □ Other considerations
- □ Summary

Background on EFGR- positive non-small-cell lung cancer

Epidemiology

- In 2022, 36,886 new lung cancer cases in England of which 80-85% are NSCLC
- Around 15% of advanced NSCLC cases have EFGR mutations
- Median age of diagnosis 60 years old, more common in females and non-smokers

Symptoms

• Symptoms are non-specific and may be disregarded leading to advanced cancer diagnosis

Prognosis

- In 2022, 66% of NSCLC diagnoses were in advanced stages (3/4)
- Estimated 5-year survival for advanced stages was 7.7% from 2016-2020
- Advanced lung cancer frequently metastasise to the central nervous system (brain metastasis)

Treatment pathway for previously untreated locally advanced or metastatic EGFR-positive NSCLC

Company

Osimertinib monotherapy is the current standard of care for patients in England who are receiving first-line treatment for locally advanced or metastatic NSCLC. Osimertinib monotherapy is given to 86% of EGFRm patients.

EAG

The EAG has no concerns regarding the choice of comparator.

Clinical perspectives

Submission from British Thoracic Oncology Group

- Main aim of treatment is to prolong survival and maintain or improve quality of life
- An improvement of 3 or more months to OS or PFS is clinically significant
- The accepted standard of care first line treatment is osimertinib
- Osimertinib plus chemo is expected to improve survival but will also increase toxicity, although this should be manageable with extra resource and consideration of side effects
- Treatment would be discontinued on loss of clinical benefit or unmanageable toxicities

Patient perspectives

Submissions from Roy Castle Lung Cancer Foundation and a carer

- EGFR mutation patients tend to be diagnosed later, as they do not fit the 'typical' lung cancer patient profile
- Targeted therapies, such as osimertinib, have been a major step forward in the treatment of lung cancer, and a great source of hope for patients. However, disease progression is likely to occur eventually
- Progression free survival appears to be longer when osimertinib is in combination with pemetrexed and platinum-based chemotherapy
- Osimertinib side effects can be debilitating, adding chemotherapy will likely decrease the quality of life of people receiving treatment
- Osimertinib is an oral therapy, so can be acquired from pharmacies. Adding chemotherapy will require IV treatment and more time spent at hospitals

Equality considerations

No equalities issues were raised by any stakeholders during the appraisal process

- Will osimertinib with pemetrexed and platinum-based chemotherapy only be suitable for fitter people?
 - Does the committee consider that there are any relevant equality issues that it should consider in its decision making and, if so, how?

Key issues

Key issues	ICER impa	act
Subgroups according to central nervous system (CNS) metastases	Large	
Extrapolation of overall survival	Moderate	
Extrapolation of time to treatment discontinuation	Large	
Progression free health state utility	Moderate	
Measurement of resource use	Moderate	
Assumptions on subsequent treatments at second line (2L)	Large	
Other issues (smaller impact on ICER)		
Average starting age in the model		
Distribution of platinum chemotherapy		
Relative dose intensity (RDI) of chemotherapy		
Progressed disease health state utility		
Unit costs		

Osimertinib (Tagrisso, AstraZeneca)

Technology details

Marketing authorisation	 Osimertinib is indicated in combination with pemetrexed and platinum-based chemotherapy for the first-line treatment of adult patients with advanced NSCLC whose tumours have EGFR exon 19 deletions or exon 21 (L858R) substitution mutations. Marketing authorisation was granted in September 2024
Mechanism of action	 Highly selective and irreversible inhibition of activating sensitising EGFR mutation (EGFRm+) and activating resistance mutation T790M
Administration	80mg oral dose once daily
Price	 List price of £5,770 per 30 tablets (40 mg or 80 mg) Average cost of a course of treatment at list price is £104,705.51 Osimertinib has a commercial arrangement

Osimertinib with pemetrexed and platinum-based chemotherapy for untreated EGFR mutation-positive advanced non-small-cell lung cancer

- Background and key issues
- Clinical effectiveness
- Modelling and cost effectiveness
- □ Other considerations
- □ Summary

Key clinical trial results – FLAURA2

Osimertinib+chemo (n=279) improves PFS and OS compared to osimertinib mono (n=278)

Osimertinib+chemo vs osimertinib mono – PFS randomised period - FAS

Osimertinib+chemo vs osimertinib mono – OS January 2024 DCO

NICE Abbreviations: CI, confidence interval; CTx, chemotherapy; DCO, data cut off; FAS, full analysis set; HR, hazard ratio; OS, overall survival; PFS, progression free survival

Key issues: Subgroups according to CNS metastases

Osimertinib plus chemotherapy appears more cost-effective in people with CNS metastases

Background

No subgroups identified in the NICE scope or company submission

Company

- Data indicates osi+chemo offers clinically meaningful CNS benefit vs osimertinib alone
- CNS metastases may disrupt blood-brain barrier, facilitating penetration of chemotherapy
- Subgroup results consistent with ITT ITT remains decision making population of interest

EAG comments

- FLAURA2 indicates that osimertinib plus chemotherapy may have a greater benefit for both PFS and OS in people with baseline CNS metastases - no statistically significant differences between subgroups, although analyses lacked statistical power
- EAG clinical advisors said they would like to use osi+chemo in this subgroup
- With company's base-case settings, CNS metastases subgroup more cost effective

Tech team comments

• CNS metastases subgroups considered appropriate in another NSCLC TA (TA909)

NICE

Are people with CNS metastases before treatment a clinically distinct and identifiable subgroup?

Osimertinib with pemetrexed and platinum-based chemotherapy for untreated EGFR mutation-positive advanced non-small-cell lung cancer

- Background and key issues
- Clinical effectiveness
- Modelling and cost effectiveness
- □ Other considerations
- □ Summary

Key issue: Extrapolation of overall survival

Company prefer 2-knot normal model for both treatments, EAG prefer odds and 1-knot for osi mono

Background

- Company analysed OS from January 2024 DCO, OS data violated PH assumption, requiring separate models for each arm – EAG agree. From visual inspection, company determined standard parametric models not suitable
- Final OS DCO will be conducted when data are approximately 60% mature

Company

- 2-knot normal model for osi mono aligns closest with long-term OS estimates of clinicians
- 2-knot normal model for osi+chemo provided best fit, gave conservative long-term OS

EAG comments

- Trial data (FLAURA) for osi mono suggests around 38% OS at 4 years, likely lower in FLAURA2 due to higher proportion of people with CNS metastases
- 1-knot odds spline model for osi mono fits trial data, also aligns with company clinical experts: OS 35% at 4 years, 25% at 5 years, 5% at 10 years
- 2-knot odds spline model for osi+chemo shows OS curves converging but still slightly separated at 10 years - aligns with company prediction of when both arms stop 1L treatment

Key issue: Extrapolation of overall survival

For graphical version – see appendix

Osimertinib monotherapy – observed data and company and EAG preferred models

	Mean	Med	1 year	2 years	3 years	5 years	10 year	15 years
Observed	-	36.5 months	92.0%	72.1%	50.3%	-	-	-
Pred. (2 knot normal - company)	46.2 months	36.5 months	89.8%	72.5%	52.2%	24.8%	4.4%	1.1%
Pred. (1 knot odds - EAG)	49.7 months	36.5 months	89.8%	72.4%	52.2%	25.9%	6.8%	2.8%

Osimertinib plus chemo - observed data and company and EAG preferred models

	Mean	Med	1 year	2 years	3 years	5 years	10 year	15 years
Observed	-	-	88.8%	79.7%	63.7%	-	-	-
Pred. (2 knot normal - company)	53.3 months	43.4 months	88.7%	78.9%	61.8%	32.6%	6.8%	1.8%
Pred. (2 knot odds - EAG)	54.8 months	42.4 months	88.7%	78.9%	61.9%	32.0%	7.8%	3.0%

Which models provide the most plausible long-term OS estimates?

Abbreviations: Med, median; OS, overall survival; pred, predicted

Key Issue: Extrapolation of time to treatment discontinuation

EAG and company disagree on TTD extrapolation for osi mono arm: company use gamma, EAG Gompertz

Company

- Based on AIC and BIC rankings, loglogistic was most suitable TTD extrapolation in the osimertinib monotherapy arm
- Loglogistic predicts decreasing hazard ratio, so may overpredict treatment duration
- Gamma distribution had 2nd best AIC/BIC, did not appear to overpredict treatment duration

EAG comments

- Nearly all the osimertinib monotherapy TTD extrapolations are implausible because they gave estimates substantially above the PFS curve
 - PFS curve reasonable and TTD is a bigger driver of ICER than PFS in model so appropriate to consider changes to TTD curve
- Gompertz didn't give best AIC or BIC, but the model fit statistics are adequate, the visual fit appears to be good, and extrapolations are plausible compared with the curve used for PFS
- EAG therefore uses the Gompertz for osimertinib monotherapy TTD in its base-case

NICE Abbreviations: AIC, Akaike information criterion; BIC, Bayesian information criterion; ICER, incremental cost-effectiveness ratio; PFS, progression-free survival; TTD, time to treatment discontinuation

For TTD curves alongside PFS curve – <u>see appendix</u>

Key Issue: Extrapolation of time to treatment discontinuation

EAG and company disagree on TTD extrapolation for osi mono arm: company use gamma, EAG Gompertz

FLAURA2 TTD Kaplan-Meier and extrapolations for osimertinib plus chemotherapy

FLAURA2 TTD Kaplan-Meier and extrapolations for osimertinib monotherapy

Is the Gompertz or the gamma extrapolation more plausible for osimertinib monotherapy TTD?

NICE Abbreviations: KM, Kaplan-Meier; TTD, time to treatment discontinuation

Key Issue: Progression free health state utility

EAG concerned that PFS utility is too high

Company

- Utilities for PFS state from FLAURA2 EQ-5D-5L responses mapped using Hernandez-Alava
- Missing EQ-5D-5L responses are adjusted for using a MMRM model
- Disutility applied to osi+chemo arm at model start to account for AEs due to chemotherapy use
- Disutility values and adverse event durations were obtained from TA654 submission

Other considerations

• Patient expert noted AEs of osimertinib can be debilitating, adding chemo may worsen QoL

Table Company and EAG base case PFS utility and utility decrement from chemo use in each arm				
	Company base case	EAG base case		
Base PFS utility		0.794		
Chemo decrement				
Length of decrement	First model cycle (30 days)	Entire PFS health state (osi+chemo only)		
Abbreviations: AEs. adverse events: MMRM. mixed models for repeated measures: PFS. progression free survival: QoL. quality of life				

CONFIDENTIAL

Key Issue: Progression free health state utility

For more info see appendix

EAG concerned that PFS utility is too high

EAG comments

- PFS values lack face validity compared with general population (0.799 for age 55 to 64) and NSCLC population in literature. Possible reasons for overestimate:
 - Missing utility data may overvalue PFS utility MMRM not adequate to address bias as more missing data for osi+chemo group, specifically in period on chemo when QoL expected to be lower due to adverse events
 - Mapping model may derive higher than expected utilities
- AE disutility from chemo use too small and would last longer than first model cycle
- EAG's alternative approach:
 - use TA654 PFS utility (0.794)
 - apply utility decrement to mean duration of PFS in osi+chemo arm, calculated from the difference in improvement in utility from baseline to mean progression-free period between arms (

What utility value should be used for the progression free health state? How should the effect of chemo on quality of life be captured in the model?

Key Issue: Measurement of resource use

Company and EAG differ in updates to resource use source

Background

• Company incorporated resource use from Brown et al. (2013), updated based on advice from their clinical experts

Company

- Brown et al. has been used as the resource use source in many previous NSCLC TAs
- Clinical feedback was sought to ensure inputs were reflective of current UK clinical practice

EAG comments

- Brown et al. resource estimations are a decade old fewer treatment options were available
- Sought own clinical advice to update Brown et al. resource use estimations

Key Issue: Measurement of resource use

For discussion of unit costs see appendix

Company and EAG differ in updates to resource use source

	Progression-free health state*		Progressed disease health sta	
Resource type	Company	EAG base-case	Company base-	EAG base-case
		40.475		0.5
Outpatient visits	9.01	12.175	7.91	9.5
		2 (or 4 for those		2 (or 4 for those
MRI scans	2.00	with CNS	2.00	with CNS
		metastases)		metastases)
CT scans (chest)	0.62	2	0.24	2
CT scans (other)	0.36	2	0.42	2
ECG	1.04	2	0.88	0
Clinical nurse	12 hours	12 hours contact	12 hours contact	12 hours contact
specialist	contact time	time	time	time
	0	0	3.96	2
ACC VISILS	U	U	consultations	۷

*Resource use per person, per year

NICE

What are the most appropriate resource use data?

Key Issue: Assumptions on subsequent treatments at second line (2L)

EAG disagrees with proportions of subsequent treatments used in each treatment arm

Background

• In company's model, proportions of patients that receive each subsequent treatment was estimated from FLAURA2 trial data (although no ABCP use in trial) and expert opinion

Company

- Clinical experts advised 10–20% of patients receiving 2L treatment could receive ABCP
- Assumption of no ABCP use does not accurately reflect NHS practice

EAG comments

- Proportion receiving subsequent anticancer treatments after discontinuing 1L treatment in FLAURA2 was higher (
 for osi mono compared with osi+chemo (
- Clinical advice suggested small proportion (<10%) would receive ABCP after 1L treatment – conducted scenario with ABCP use at 10%
- Clinical advice suggested that only difference in how people are treated at 2L, is that pemetrexed would not be used at later lines following osi+chemo at 1L
- EAG base case changes subsequent treatments proportions, including no ABCP in either arm – subsequent treatments in model only affects costs

Abbreviations: 1L, first line; 2L, second line; ABCP, Atezolizumab + bevacizumab + carboplatin + paclitaxel

CONFIDENTIAL

Key Issue: Assumptions on subsequent treatments at second line (2L)

Company base case for distribution of subsequent treatments at 2L in patients who received them

EAG base case for distribution of subsequent treatments at 2L in patients who received them

EAG scenario for distribution of subsequent treatments at 2L in patients who received them

From \downarrow To \rightarrow	PDC	Pemetrexed	Docetaxel	ABCP
Osimertinib +				
chemotherapy				
Osimertinib				

What is the most appropriate distribution of subsequent treatment?

NIC

Abbreviations: 2L, second line; ABCP, Atezolizumab + bevacizumab + carboplatin + paclitaxel; PDC, Platinum Doublet Chemotherapy

CONFIDENTIAL

Summary of company and EAG base case assumptions

Assumption	Company base case	EAG base case
PFS utility value		0.794 and Second disutility in the PFS health state for osi+chemo
OS extrapolations	2-knot spline normal models for both treatments	1-knot odds spline for osi mono 2-knot odds spline for osi+chemo
TTD extrapolations*	Gompertz model for osi+chemo Gamma model for osi mono	Gompertz model for both treatments
Resource use	See <u>slide 21</u>	See <u>slide 21</u>
Subsequent treatments at 2L	See <u>slide 23</u>	See <u>slide 23</u>
Ass	umptions with minimal impact on	ICER
Starting age (<u>see appendix</u>)	61 years	65.6 years
Platinum chemo distribution	50% carboplatin, 50% cisplatin	100% carboplatin
Relative dose intensity (RDI) of chemotherapy	100%	96.4%
PD utility value (<u>see appendix</u>)	0.64	0.678
Unit costs	See appendix <u>slide 40</u>	See appendix slide 40

*pemetrexed modelled separately - both company and EAG base cases use exponential distribution for pemetrexed TTD extrapolation

Cost-effectiveness results

- All ICERs are reported in PART 2 slides because they include confidential discounts
- When confidential discounts are included, the company base case is in the range normally considered a cost-effective use of NHS resources
- The EAG base case is significantly above the range normally considered a cost-effective use of NHS resources

Osimertinib with pemetrexed and platinum-based chemotherapy for untreated EGFR mutation-positive advanced non-small-cell lung cancer

- Background and key issues
- Clinical effectiveness
- Modelling and cost effectiveness
- ✓ Other considerations
- □ Summary

Managed access

Criteria for a managed access recommendation

The committee can make a recommendation with managed access if:

- the technology cannot be recommended for use because the evidence is too uncertain
- the technology has the plausible potential to be cost effective at the currently agreed price
- new evidence that could sufficiently support the case for recommendation is expected from ongoing or planned clinical trials, or could be collected from people having the technology in clinical practice
- data could feasibly be collected within a reasonable timeframe (up to a maximum of 5 years) without undue burden.

Managed access team comments

• No managed access proposal submitted

Osimertinib with pemetrexed and platinum-based chemotherapy for untreated EGFR mutation-positive advanced non-small-cell lung cancer

- Background and key issues
- Clinical effectiveness
- Modelling and cost effectiveness
- □ Other considerations
- ✓ Summary

Key issues

Issue	ICER impact	Slide
Subgroups according to central nervous system (CNS) metastases	Large	<u>Slide 12</u>
Extrapolation of overall survival	Moderate	<u>Slide 14</u>
Extrapolation of time to treatment discontinuation	Large	<u>Slide 16</u>
Progression free health state utility	Moderate	<u>Slide 18</u>
Measurement of resource use	Moderate	<u>Slide 20</u>
Assumptions on subsequent treatments at second line (2L)	Large	<u>Slide 22</u>

Osimertinib with pemetrexed and platinum-based chemotherapy for untreated EGFR mutationpositive advanced non-small-cell lung cancer

Supplementary appendix

NICE National Institute for Health and Care Excellence

CONFIDENTIAL

Decision problem

Population, intervention, comparators and outcomes from the scope

	Final scope	Company	Rationale if different from the final NICE scope
Population	Adults with untreated advanced EGFR mutation- positive NSCLC		In line with the population of the pivotal FLAURA2 trial, and consistent with the anticipated licensed indication
Intervention	Osimertinib with pemetrexed and platinum-based chemotherapy	As per NICE scope	N/A
Comparators	Established clinical management without osimertinib with pemetrexed and platinum-based chemotherapy including: Osimertinib, Dacomitinib, Afatinib, Erlotinib, Gefitinib	Osimertinib	Osimertinib monotherapy represents the current SoC for patients in England who are receiving first-line treatment for locally advanced/metastatic NSCLC and is used in 86% of EGFRm patients
Outcomes	The outcome measures to be considered include: OS, PFS response rates, DoR, TTD, AEs, HRQoL	As per NICE scope	N/A

Return to main slide

Key clinical trial

Further data cut from FLAURA2 expected

Clinical trial designs and outcomes

	FLAURA2 (NCT04035486)
Design	Phase 3, international, open-label, randomised study
Population	Patients with EGFRm (exon 19 deletion or L858R mutation) advanced NSCLC who had not previously received treatment for advanced disease
Intervention	Osimertinib + pemetrexed and cisplatin/carboplatin
Comparator(s)	Osimertinib
Median duration of follow-up*	Osi+chemo PFS: 19.5 months; Osi mono PFS:16.5 months
Primary outcome	PFS based on investigator's assessment
Key secondary outcomes	OS, response rates, duration of response, TTD adverse effects of treatment, HRQoL
Locations	Multinational (151 sites in 21 countries [5 UK sites])
Used in model?	Yes

A final analysis of OS will be conducted when the data are approximately 60% mature

FLAURA2 baseline characteristics and subgroup results

Baseline characteristics for intervention and comparator

Characteristic	Osi+chemo (n=279)	Osi mono (n=278)
Age (median, years)	61.0	61.5
Female	62.0%	60.8%
Metastatic at study entry	95.0%	97.5%
CNS metastases at study entry	41.6%	39.6%

PFS results according to CNS metastases at baseline

CNS metastases at baseline	Treatment group	Ν	Number (%) of patients with progression	Hazard ratio	95% CI
Yes	Osi + chemo	116	52 (44.8)	0.47	(0.33, 0.66)
	Osi mono	110	79 (71.8)	0.47	
Νο	Osi + chemo	163	68 (41.7)	0.75	(0.55, 1.02)
	Osi mono	168	87 (51.8)	0.75	(0.33, 1.03)

Other issue: Generalisability of the FLAURA2 trial

EAG concerned with the generalisability of the FLAURA2 trial results to NHS practice

Background

- FLAURA2 included 23 people from the UK with a total study population of 557
- The average age of study participants was 61 years

Company

- Advisors in the UK advisory board agreed the FLAURA2 patient population was representative of the EGFRm NSCLC population in the UK
- Subsequent treatments observed in FLAURA2 were reweighted by clinical experts to reflect NHS practice

EAG comments

- Identified three issues relating to the external validity of the FLAURA2 study:
 - FLAURA2 participants were younger (average age 61) and more likely to be diagnosed at stage 4A ٠ compared to published UK survey data (Molife et al. 2023)
 - 2- and 3L therapies in FLAURA2 and whether these treatments are routinely available on NHS ٠
 - Proportion of FLAURA2 participants with CNS metastases at baseline not representative of NHS practice
- Recommends changing starting age in model to 65.6 years to align with Molife et al. (2023)
- Further changes to address other generalisability issues discussed in other key issues

Are the results of FLAURA2 generalisable to NHS practice? What should the starting age in the model be?

Adverse events

NICE

AE category	Number (%) of patients	
	Osi + chemo	Osimertinib
	(N=276)	(N=275)
Any AE of CTCAE Grade ≥3	176 (63.8)	75 (27.3)
Causally related to treatment	146 (52.9)	29 (10.5)
Causally related to osimertinib	81 (29.3)	29 (10.5)
Causally related to chemotherapy	138 (50.0)	NA
Causally related to carboplatin/cisplatin	104 (37.7)	NA
Causally related to pemetrexed	130 (47.1)	NA
Any SAE (including events with outcome of death)	104 (37.7)	53 (19.3)
Causally related to treatment	52 (18.8)	15 (5.5)
Causally related to osimertinib	36 (13.0)	15 (5.5)
Causally related to chemotherapy	48 (17.4)	NA
Causally related to carboplatin/cisplatin	36 (13.0)	NA
Causally related to pemetrexed	46 (16.7)	NA
Any AE leading to discontinuation of any study drug	132 (47.8)	17 (6.2)
Leading to osimertinib discontinuation	30 (10.9)	17 (6.2)
Leading to chemotherapy discontinuation	125 (45.3)	NA
Causally related to carboplatin/cisplatin	46 (16.7)	NA
Causally related to pemetrexed	119 (43.1)	NA

<u>Return to main slide</u> <u>Key issue</u>: Extrapolation of overall survival appendix

Which models are the most suitable for extrapolating OS?

<u>Return to main slide</u> <u>Key Issue</u>: Extrapolation of time to treatment discontinuation

EAG and company disagree on TTD extrapolation for osi mono arm: company use gamma, EAG Gompertz

TTD Curves and PFS Weibull (Black line)

Company and EAG preferred PFS curve with all extrapolations of TTD

Company and EAG preferred PFS curve with company preferred TTD extrapolation (gamma) and EAG preferred TTD extrapolation (Gompertz)

TTD: Company (Gamma); EAG (Gompertz); PFS

Key Issue: Progression free health state utility

Health state (source)	Utility value		
	Osi+chemo	Osi mono	
Baseline (FLAURA2)			
Progression-free (FLAURA2)			
Difference baseline to mean progression-free (FLAURA2)			
Progression-free (TA654)	0.7	794	

CONFIDENTIAL Return to issues Other Issue: Progressed disease health state utilities

EAG concerned that PD utility is too low

Company

 Utility for the PD state sourced from Labbe et al. 2017 - a Canadian longitudinal cohort study of NSCLC, including 183 people with EFGR mutations - very similar to those used and accepted by EAGs in two previous NSCLC TAs

EAG comments

- Company's PD utility value results in a decrement of **Company**, which is more than differences between these health states reported for other TAs in the same population
- The EAG's preference is for using TA654 utility values of 0.794 for PFS and 0.678 for PD

What is the most appropriate utility value for the PD health state?

Other Issue: Unit costs in the model

Company and EAG differ in cost source

Background

• Company base-case uses NHS payment scheme 2023/25 tariffs and PSSRU 2022

EAG comments

 EAG considers NHS reference costs better portray the true opportunity cost of resource use on the NHS

Tech team comments

 NHS reference costs typically used, manual states "costs relevant to the UK healthcare system should be used" – both sources relevant to UK healthcare

Resource type	Company base-case (NHS payment scheme 2023/25 and PSSRU 2022)	EAG base-case (NHS reference costs)
Outpatient visits	£141	£164
MRI scans	£150	£240
CT scans (chest)	£91	£119
CT scans (other)	£93	£182
ECG	£135	£301
Clinical nurse specialist	£52	£119
A&E visits	£275	£158