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Background
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Clinical background 

Plain film radiography or X-ray is the most common medical imaging approach used to detect fractures in urgent care settings. Missed 

fractures are reported to be the most common diagnostic error in the ED1. 

Missed or delayed diagnosis of fractures on radiographs is reported to occur in around 3% to 10% of cases2.

1. Hussain et al. 2019; 2. Kuo et al. 2022; 
3. NHS resolution report on missed fractures 
 

Missed fractures can lead to poor patient outcomes and 

further harms including3:

• pain and suffering

• loss of function

• need for further or prolonged treatments

• cosmetic deformity

• nerve damage

• prolonged recovery

• death. 

Missed and delayed fracture diagnoses can also have an 
impact on service delivery, for example:

• increased waiting times

• delays in people being discharged

• people being recalled

• additional medical appointments

• surgical procedures and physiotherapy.

https://bmcemergmed.biomedcentral.com/articles/10.1186/s12873-019-0289-3
https://pubs.rsna.org/doi/10.1148/radiol.211785?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
https://resolution.nhs.uk/wp-content/uploads/2022/03/2-NHS-Resolution-ED-report-Missed-Fractures.pdf
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Unmet need

• The radiology get it right first time programme national speciality report highlights the increasing demand on radiology services 

that is not matched by growth in NHS radiology capacity. As a result, following interpretation in urgent care, a definitive diagnosis 

by a radiology specialists is often delayed.

• X-rays are initially interpreted in the urgent care setting by healthcare professionals who are not radiology specialists and may be 

inexperienced at interpreting X-rays, potentially leading to missed fractures or unnecessary referrals to fracture clinics prior to a 

definitive radiology report. 

• Other factors that may contribute to missed or delayed diagnosis include busy work environments and frequent distractions, 

suboptimal image visualisation facilities, and interpretation outside normal working hours. 

1. Hussain et al. 2019; 2. Kuo et al. 2022

https://gettingitrightfirsttime.co.uk/wp-content/uploads/2020/11/GIRFT-radiology-report.pdf
https://bmcemergmed.biomedcentral.com/articles/10.1186/s12873-019-0289-3
https://pubs.rsna.org/doi/10.1148/radiol.211785?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
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Purpose of the technology

Artificial intelligence (AI) technologies that can help detect fractures and support healthcare professional interpretation of X-ray 

images could improve the accuracy of X-ray fracture diagnoses in urgent care settings. This could help reduce:

• the number fractures that are missed before a radiologist or reporting radiographer reviews the X-rays. 

• the number of people being recalled to hospital following radiology review

• the risk of further injury or harm to people during the time between interpretation and initial treatment decision in the ED and 

the radiology report. 

• the burden of unnecessary referrals to virtual fracture clinics.  

1. IR(ME)R: Implications for clinical practice in diagnostic imaging, interventional 
radiology and diagnostic nuclear medicine (2020)

Ionising radiation (medical exposure) regulations (IRMER)1 state that clinical evaluation of X-rays requires a trained person. 
Therefore, AI technologies currently can’t be used autonomously without human interpretation. 
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Target condition and current practice

• Fracture assessment and diagnosis typically involves triage where an ED nurse, Advanced Clinical Practitioner (ACP) or ED doctor 

will carry out an initial assessment before requesting imaging.

• X-rays are usually the first line imaging approach for non-complex fractures and are performed by a diagnostic radiographer. 

• Multiple treatment options are available for fractures including surgical and non-surgical approaches depending on the type of 

fracture. 

See the final scope for further details.

https://www.nice.org.uk/guidance/indevelopment/gid-hte10044/documents
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Variation in practice

• NICE guideline on non-complex fractures (NG38)1) recommends that a radiologist, radiographer or other trained reporter should 

review X-rays and provide a definitive report before the injured person is discharged (hot reporting). Clinical experts explained 

that in practice this is not always possible and reporting delays can occur ranging from days to weeks.

• Clinical experts said that X-rays are not usually prioritised for radiology reporting, with most centres operating a first-in, first-out 

system. 

• There may be variations in the staff groups that would be involved in diagnosing fractures for people that attend an urgent care 

settings out of hours 

• Different imaging types may be used for some suspected fractures, depending on centre resources and capacity:

• NG381 recommends that MRI should be considered for first-line imaging for suspected scaphoid fractures

• CG1242 recommends offering MRI or CT if a hip fracture is suspected despite no fracture being detected on X-ray

1. NICE guideline 38 Fractures (non-complex): assessment and management, 2. NICE 
clinical guideline 124 Hip fracture: management

https://www.nice.org.uk/guidance/ng38
https://www.nice.org.uk/guidance/ng38
https://www.nice.org.uk/guidance/cg124
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Overview of medical imaging pathway for non-complex 
fractures

ENP: emergency nurse practitioner, ACP: Advanced clinical practitioner, 
ED: emergency department, HCP: healthcare professional

Initial clinical assessment/triage and request for 

X-ray imaging (Nurse) 

Completion of X-ray imaging

(diagnostic radiographer)

Interpretation of X-ray 

(ENP, ACP, ED doctor)

Provision of most appropriate treatment: advice, conservative treatment, surgery, 

request for further imaging (ENP, ACP, ED doctor)

Formal reporting by reporting radiographer or 

radiologist 

Report acted on by ED HCP

Definitive radiology report may be issued after the 
person is discharged. If hot reporting is in place the 
radiology report is received before discharge.

Request for 
further 
imaging: 
X-ray, CT, 
MRI



99999

Interventions
AI Technology 
(manufacturer)

CE marking Regions covered Population Other 

BoneView 
(Gleamer)

Class IIa
Appendicular skeleton, ribs and 
thoracic-lumbar spine

2 years and over
The software identifies fractures, 
dislocations, effusions and bone lesions

qMSK (Qure.ai) Class IIb Appendicular skeleton and ribs Adults

Rayvolve (AZmed) Class IIa Appendicular skeleton and ribs
Adults

Detects dislocations, joint effusions and 
chest pathologies (pneumothoraces, 
cardiomegaly, pleural effusions, pulmonary 
oedema, consolidation, nodules)

RBfracture 
(Radiobotics)

Class IIa Appendicular skeleton
Approved for use in 
people above 2 
years of age

Detects effusion of the knee and elbow, 
lipohaemarthrosis of the knee, rib fractures, 
and periprosthetic fractures

TechCare Alert 
(Milvue)

Class IIa Appendicular skeleton and ribs No age limit 
Detects dislocations, elbow joint effusion, 
pleural effusion, pulmonary opacity, 
pulmonary nodules and pneumothorax
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Decision problem (1)

PICO

Populations People presenting to the ED, UTC or MIU with a suspected fracture. 

Potential subgroups • Children and young people (0 to 16 years of age)

• Older people or people with frailty

• People with conditions affecting bone health (for example, osteoporosis and osteogenesis imperfecta)

• Hip

• Hand (including wrist), foot (including ankle)

• Fractures including the growth plate (Salter-Harris) in children

• Fractures of the elbow in children

Interventions AI used as a decision aid for X-ray image interpretation and fracture assessment prior to radiology review

Comparator ED clinician or healthcare professional interpretation of X-ray radiograph without AI assistance. 

For further details see the final scope and the EAG’s final protocol.
ED, emergency department; UTC, urgent treatment centre; MIU, minor injuries unit

• Does the use of software with artificial intelligence (AI) derived algorithms for analysing X-ray images to detect suspected fractures have the 

potential to be clinically and cost-effective to the NHS?

• Does the software have the potential to address an unmet need in the NHS?

https://www.nice.org.uk/guidance/indevelopment/gid-hte10044/documents
https://www.nice.org.uk/guidance/indevelopment/gid-hte10044/documents
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Decision problem (2)
Outcomes
Intermediate 
measures for 
consideration may 
include:

• Measures of diagnostic accuracy to detect fractures

• Accuracy when used by different healthcare professionals

• Diagnostic confidence

• Healthcare professional X-ray reading time

• Time to diagnosis or time to X-ray definitive radiology report

• Time spent in the emergency department, urgent treatment centre or minor injuries unit

• Time to treatment

• Proportion of people that need further imaging

• Number of missed fractures

• Rate of missed fracture-related further injury

• Number of people recalled following radiology review 

• Number of treatments

• Number of hospital appointment/visits including referrals to fracture clinics and orthopaedics

• Number of hospital admissions and length of stay in hospital

• Number of further imaging events required

• Failure rate or rate of inconclusive AI reports

• Healthcare professional user acceptability of AI tools for detecting fractures

For further details see the final scope and the EAG’s final protocol

https://www.nice.org.uk/guidance/indevelopment/gid-hte10044/documents
https://www.nice.org.uk/guidance/indevelopment/gid-hte10044/documents
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Clinical effectiveness
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Clinical effectiveness: evidence base

• 16 studies were identified that met the inclusion criteria for the clinical effectiveness review. 

o 8 studies evaluated BoneView

o 5 studies evaluated RBfracture

o 1 study each for Rayvolve and TechCare Alert

o No studies were found for qMSK

o One study (Bousson et al. 2023) was a head-to-head comparison of assisted reading using 3 technologies: BoneView, 

Rayvolve and TechCare Alert. 

Full details of the included studies are in table 2, pages 26 to 29 in the EAR. 
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Evidence base: outcomes

• Sensitivity, specificity, and contingency tables were reported or calculable for all studies. 

• Diagnostic accuracy that was reported per patient (rather than per fracture or per scan) was prioritised by the EAG for inclusion in 

the review. This is because most studies reported data in this way and because these data were most relevant to the economic 

analysis. 

• PPV and NPV were either not reported or were not extracted for case-control studies.

• Full details of outcomes reported in the included studies are presented in table 5 (page 50) in the EAR. 

PPV, positive predictive value; NPV, negative predictive value 
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Evidence base: impact of study design 

• The EAG said that consecutive and random sampling study designs are generally more robust for diagnostic evaluation, as they 

more closely represent the prevalence of the target condition that would be seen in clinical practice. 

• Six studies1–6 included consecutive cases presenting to participating centres during the study period. 

• One study7 included a random selection of cases from a database of patients who presented with a suspected fracture. 

• Nine studies8–16 used a case-control design.

• Most studies were retrospective with only 23,5 using a prospective design. 

See section 4.2.1 (page 30) of the EAR for further details. 

1. Cohen et al. (2023); 2. Canoni-Meynet et al. (2022); 3. Oppenheimer et al. (2023); 4. Bousson et al. (2023); 5. Dell-Aria et al. (2024); 
6. Ruitenbeek et al. (2024); 7. Fu et al. (2024); 8. Radiobotics (2021); 9. Meetschen et al. (2024); 10. Duron et al. (2021); 11. Guermazi et al. (2022); 12. Bachmann et al. 
(2024); 13. Jørgensen et al. (2023); 14. Yogendra et al.; 15. Suite (2020); 16. Nguyen et al. (2022)  
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Evidence base limitations

Europe (non-UK)

USA

Asia

0 5 10 15

Location
(n studies)

Hospital/
trauma centre

Hospital

Medical setting

Virtual centre

Unspecified

0 5 10

Setting
(n studies)

• None of the included studies were set in the UK. 

• The EAG stated that it is uncertain how applicable data from other countries 

is to the target settings

• Diagnostic accuracy of the index test and technologies would be expected to vary 

according to both case mix and reader experience.

• Most studies did not specify the version of the technology or training received

• Washout period between reading ranged between no washout to 

3 months

• Where the reference standard was based on limited access to information about the 

patient and injury, the EAG considered there to be an increased risk of incorrect 

judgements

• Reference standard used in 3 studies1-3 included the results of the AI technology, and 

in one study4 it was unclear whether this was the case.

1. Canoni-Meynet et al. 2022; 2. Bousson et al. 2023; 3. Yogendra [unpublished]; 4. 
Oppenheimer et al. 2023. For more detail see section 4.2.1 in EAR
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Quality appraisal of included studies

• Three studies1-3 were considered to be the most appropriate for sensitivity and specificity estimates. 

• Only 1 study4 was considered to be appropriate for estimates of prevalence, NPV and PPV. However, this study only included wrist 

fractures.

• None of the included evidence was considered to be robust for all diagnostic outcomes. 

• The EAG did not do a formal quality assessment of the included studies. An overview of how quality considerations influenced the 

interpretation of diagnostic evidence and the selection of evidence to inform the economic analysis is shown in Table 6 (pages 51 

to 52) in the EAR. 

See slides 20, 23, 25 and 27 for further details on the quality assessment of the key studies.  

1. Duron et al. 2021; 2. Nguyen et al. 2022; 3. Bachmann et al. 2024; 
4. Cohen at el. 2023
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Evidence base: key studies

The EAG investigated whether it was possible to conduct a meta-analysis of data from the included studies:

• A meta-analysis to identify a pooled estimate of sensitivity and specificity for a particular technology was not feasible due to unexplained 

heterogeneity in the results of the studies. 

Due to the evidence limitations and lack of meta-analysis, the EAG identified key studies that provided the best quality evidence available to inform the 

economic analysis. 

*Suite 2020 was not presented in a peer-reviewed publication. Evidence for this technology 
was therefore of poorer quality than the studies listed above.

The key studies for each technology were:

• BoneView: Duron et al. 2021 (for adults) and 
Nguyen et al. 2022 (for children and young adults) 

• RBfracture: Bachmann et al. 2024 (adults and children)

• Rayvolve: Fu et al. 2024 and Bousson et al. 2023 

• TechCare Alert: Suite 2020* and Bousson et al. 2023. 

The EAG prioritised studies which:

• did not include the AI reports in the reference standard 

• reported results for both AI assisted and unassisted 

readers 

• had relatively large sample sizes

• were peer-reviewed.
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Diagnostic accuracy: issues

• The EAG grouped results according to the description of reader experience and seniority described in the publications. As all 

included studies were based outside of the UK, it was unclear how relevant the staff grades were to the intended staff groups in 

the NHS. Three reader groupings were used: 

• Less experienced, 

• mixed or unclear staff level, and 

• senior and highly experienced staff. 

• In general, readers with greater seniority and expertise at reading X-rays were associated with more accurate unassisted diagnosis 

estimates, but this was not always the case. The EAG noted that, as this lacks face validity, these results should be interpreted 

with caution when pooled for the evidence synthesis. 
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Key studies: Boneview 
Study design feature Duron et al. (2021) Nguyen et al. (2022)

Location France USA/France

Intervention and 
comparator

BoneView assisted vs unassisted

Design Retrospective, case-control with random selection

Reference standard
Consensus between 2 skeletal imaging radiologists with >9 
years of experience (disagreements resolved by another 
radiologist). Timing: NR.

Consensus between 2 radiologists with >8 years of experience 
in MSK imaging. Paediatric radiologist (with 5 years of 
specialisation) reviewed all radiographs after ground truth was 
determined to classify fractures by type. Timing: NR.

Reader details
6 radiologists, 6 emergency physicians (including residents and 
experts). No consultant support. 

5 radiology residents and 3 expert paediatric radiologists (at 
least 7 years of experience, including >3 years specialising in 
paediatric radiology (No consultant support). 

Population, fracture 
sites and prevalence

600 adults, 600 images, included shoulder, arm, hand, pelvis, 
leg, foot. N with fractures 300 (50%): Foot 44 (7.4%); Hand 44 
(7.3%)

300 children and young adults (2 to 21 years), 300 images. 
Appendicular. N with fractures 150 (50%): foot/ankle 30 (10%); 
hand/wrist 30 (10%); elbow/arm in children 60 (20%); Salter-
Harris, Salter II 21 (7%), Salter IV: 3 (1%)

Quality assessment
Sensitivity and specificity: Green
Prevalence, NPV and PPV: Red - Case-control design 

See tables 2, 3 and 4 in the EAR for full details. NPV, negative predictive value; PPV, positive predictive value 
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Diagnostic accuracy: Boneview (1)

Further details including results for other staff experience groups are shown in tables 7 and 9 in the EAR. 

Study Staff experience group Sensitivity (assisted)
Sensitivity 

(unassisted)
Specificity (assisted)

Specificity 
(unassisted)

Duron et al. 
(2021)

Less experienced readers 
(emergency physicians)

74.3 61.3 96.6 90.6 

Nguyen et 
al. (2022)

Mixed or unclear 82.7 73.2 90.3 89.6

Mixed fracture and age groups

Hand and wrist

Study Staff experience group Sensitivity (assisted)
Sensitivity 

(unassisted)
Specificity (assisted)

Specificity 
(unassisted)

Duron et al. 
(2021)

Mixed or unclear 80.2 59.6 91.0 84.7

Nguyen et 
al. (2022)

Mixed or unclear 87.1 68.8 88.3 87.9
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Diagnostic accuracy: Boneview (2)

Study Staff experience group Sensitivity (assisted)
Sensitivity 

(unassisted)
Specificity (assisted)

Specificity 
(unassisted)

Duron et al. 
(2021)

Mixed or unclear 86.9 71.8 92.9 88.0

Nguyen et 
al. (2022)

Mixed or unclear 70.8 53.8 86.3 85.8

Salter-Harris

Study Staff experience group Sensitivity (assisted)
Sensitivity 

(unassisted)
Specificity (assisted)

Specificity 
(unassisted)

Nguyen et 
al. (2022)

Mixed or unclear 92.3 81.0 NR NR

Foot and ankle

Further details including results for other staff experience groups are shown in tables 7 and 9 in the EAR. 
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Key studies: RBfracture 

Study design feature Bachmann et al. (2024)

Location US/Denmark

Intervention and comparator RBfracture assisted vs unassisted

Design Retrospective, case-control with random selection

Reference standard Consensus between 2 consultant radiologists with 1 and 10 years post-specialty experience. Each had access to 
clinical referral notes and radiology reports. Timing: NR. N = 340 (6 didn't receive reference standard). 

Reader details 2 advanced trauma nurses, 3 diagnostic radiographers, 4 A&E trainees, 3 orthopaedic specialty registrars, 3 
radiology specialty registrars. Provided with written instructions and 5 training cases. 

Population, fracture sites and 
prevalence

340 adults over 21 years and children over 2 years, 340 images. Appendicular skeleton, excluded ribs and spine. N 
with fractures 164 (49.1%): pelvis/hip 19 (5.7%); foot/ankle 30 (9.0%); hand/wrist 30 (9.0%); elbow in children 9 
(2.7%)

Quality assessment Sensitivity and specificity: Green
Prevalence, NPV and PPV: Red - Case-control design 

See tables 2, 3 and 4 in the EAR for full details. NPV, negative predictive value; PPV, 
positive predictive value 
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Diagnostic accuracy: RBfracture

Further details including results for other staff experience groups are shown in tables 7 and 9 in the EAR. 

Study Staff experience group Sensitivity (assisted)
Sensitivity 

(unassisted)
Specificity (assisted)

Specificity 
(unassisted)

Bachmann 
et al. (2024)

Less experienced readers (A&E 
trainees)

83 74 90 87

Less experienced readers 
(Trauma-care nurses)

70 58 67 60

Mixed fracture and age groups
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Key studies: Rayvolve 
Study design feature Fu et al. 2024 Bousson et al. 2023 

Location USA France 

Intervention and 
comparator

Rayvolve assisted vs unassisted BoneView/Rayvolve/TechCare Alert head-to-head

Design Retrospective, case-control with random selection Retrospective, consecutive sampling

Reference standard
Consensus between at least 2 of 3 musculoskeletal radiologists 
with 7 to 16 years of experience. 

Consensus between 4 musculoskeletal radiologists, 
3 fellows and 1 senior radiologist. Combination of radiology 
reports and AI results. Timing: 2 months later

Reader details
8 each of emergency physicians, non-MSK radiologists, and 
MSK radiologists. 

6 radiology residents (4 years of residency) 

Population, fracture 
sites and prevalence

Adults over 22 years, sample size NR but 186 exams. Ankle, 
clavicle, elbow, forearm, humerus, hip, knee, pelvis, shoulder, 
tibia/fibula, wrist, hand, foot

1,210 adults and adolescents (15 years or older), 1,500 images. 
Appendicular skeleton. N of fractures 326 (21.7%); Pelvis/hip 
50 (3.3%); Ankle 232 (15.5%); Foot 186 (12.4%); hand/wrist 314 
(20.9%)

Quality assessment

Sensitivity and specificity: Amber: small sample size

Prevalence, NPV and PPV: Amber: random sampling, but 
limited due to small sample size. 

Sensitivity and specificity: Amber: reference standard includes 
AI results
Prevalence, NPV and PPV: Amber: consecutive sampling, but 
limited due to reference standard including AI results

See tables 2, 3 and 4 in the EAR for full details. NPV, negative predictive value; PPV, 
positive predictive value 
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Diagnostic accuracy: Rayvolve

Study Staff experience group
Sensitivity 
(assisted)

Sensitivity 
(unassisted)

Specificity 
(assisted)

Specificity 
(unassisted)

Fu et al. 2024 
Less experienced readers 
(emergency physicians)

93.8 79.2 85.3 85.2

Bousson et al. 
2023 

Mixed or unclear 92.6 NR 70.4 NR

Mixed fracture 
and age groups

Hand and wrist

Foot and ankle

Study Staff experience group
Sensitivity 
(assisted)

Sensitivity 
(unassisted)

Specificity 
(assisted)

Specificity 
(unassisted)

Bousson et al. 
2023 

Mixed or unclear 97.8 NR 74.6 NR

Study Staff experience group
Sensitivity 
(assisted)

Sensitivity 
(unassisted)

Specificity 
(assisted)

Specificity 
(unassisted)

Bousson et al. 
2023 

Mixed or unclear
Foot: 90.8

Ankle: 92.1
NR

67 (EAG 
calculation)

NR

Further details including results for other staff experience groups are shown in tables 7 and 9 in the EAR. 
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Key studies: TechCare Alert 
Study design feature Suite 2020 Bousson et al. 2023 

Location France France 

Intervention and 
comparator

TechCare Alert assisted vs unassisted BoneView/Rayvolve/TechCare Alert head-to-head

Design Retrospective, case-control with random selection Retrospective, consecutive sampling

Reference standard Original radiology report produced by a radiologist
Consensus between 4 musculoskeletal radiologists, 
3 fellows and 1 senior radiologist. Combination of radiology 
reports and AI results. Timing: 2 months later

Reader details 4 junior and 4 senior radiologists. 6 radiology residents (4 years of residency) 

Population, fracture 
sites and prevalence

N with fractures 253 (40.8%); dislocation 28 (4.5%); effusion 25 
(36.2%): hip 67 (10.8%); foot/ankle 144 (23.2%); hand/wrist 
134 (21.6%); elbow in children 30 (9.4%)

1,210 adults and adolescents (15 years or older), 1,500 images. 
Appendicular skeleton. N with fractures 326* (21.7%): 
Pelvis/hip 50 (3.3%); Ankle 232 (15.5%); Foot 186 (12.4%); 
hand/wrist 314 (20.9%); 

Quality assessment
Sensitivity and specificity: Amber: not peer-reviewed and 
reference standard decision by a single radiologist.
Prevalence, NPV and PPV: Red: Case-control design

Sensitivity and specificity: Amber: reference standard includes 
AI results
Prevalence, NPV and PPV: Amber: consecutive sampling, but 
limited due to reference standard including AI results

See tables 2, 3 and 4 in the EAR for full details. NPV, negative predictive value; PPV, positive predictive value 
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Diagnostic accuracy: TechCare Alert

Further details including results for other staff experience groups are shown in tables 7 and 9 in the EAR. 

Study Staff experience group
Sensitivity 
(assisted)

Sensitivity 
(unassisted)

Specificity 
(assisted)

Specificity 
(unassisted)

Suite 2020 Less experienced readers 95 92 98 97

Bousson et al. 
2023 

Mixed or unclear 90.2 NR 92.5 NR

Mixed fracture 
and age groups

Hand and wrist

Foot and ankle

Study Staff experience group
Sensitivity 
(assisted)

Sensitivity 
(unassisted)

Specificity 
(assisted)

Specificity 
(unassisted)

Bousson et al. 
2023 

Mixed or unclear 93.6 NR 91.7 NR

Study Staff experience group
Sensitivity 
(assisted)

Sensitivity 
(unassisted)

Specificity 
(assisted)

Specificity 
(unassisted)

Bousson et al. 
2023 

Mixed or unclear
Foot: 85.4

Ankle: 89.9
NR

91 (EAG 
calculation)

NR
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Further details including results for other staff experience groups are shown in table 8 in the EAR. 

Study Staff experience group
Sensitivity 
(assisted)

Sensitivity 
(unassisted)

Specificity 
(assisted)

Specificity 
(unassisted)

Nguyen et al. 
(2022)

Mixed or unclear 82.7 73.2 90.3 89.6

Bachmann et 
al. (2024)

Mixed or unclear 89.0 78.0 80.0 77.0

Two of the key studies1,2 reported diagnostic accuracy data in children and young people. One evaluated Boneview and was in 

children and young people only1 and 1 study evaluated RBfracture and reported paediatric subgroup data2. 

1. Nguyen et al. (2022); 2. Bachmann et al. (2024)

Diagnostic accuracy: Paediatric subgroup 
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Evidence synthesis (1)

The EAG used 2 approaches to synthesise the evidence base: 

1. Data from included studies within each grouping was summarised using median and ranges (see slides 31 to 37)

2. Conducted a narrative synthesis to identify patterns in the data that could be used to inform an understanding about the 

potential value of the technology for assisting in the diagnosis of fractures.

• Synthesised data from the included studies was split by fracture type (all fractures and specific fracture sites). 

• The EAG said that the results provide an insight into potential patterns across the dataset, rather than precise diagnostic accuracy 

data for the technologies. 

For further details see section 5.2 in the EAR
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Evidence synthesis (2): unassisted diagnostic accuracy

Staff group (n studies) 

all fractures

Median sensitivity 

(range)
Median specificity (range)

Median % missed fractures 

(range)

Median % over diagnosis 

(range)

Any staff (11) 72 (31, 93) 89 (60, 100) 28.1% (7.1, 42.1) 13.3% (1.4, 40.0)

Less experienced staff (7) 70 (58, 92) 87 (60, 97) 30.4% (7.9, 42.1) 12.9% (3.0, 40.0)

Mixed or unclear staff (9) 73 (58, 87) 90 (77, 97) 26.7% (13.5, 42.0) 10.7% (2.9, 23.0)

Senior and expert staff (3) ********** ********** ********** **********

• The EAG noted that the rate of missed fractures for clinicians reading X-rays without AI assistance was high across studies, even 

for senior and expert readers. 

• Sensitivity and specificity each varied significantly across studies though, in general, unassisted readers had higher specificity, 

resulting in a high median rate of missed fractures. 

• Accuracy of unassisted readers for detecting hip fractures was high. 

• Sensitivity for detecting hand/wrist and foot/ankle fractures was lower than the mixed fracture analyses, and there was variability 

in specificity for detecting hand/wrist fractures across studies.

• There was poorer sensitivity for identifying non-obvious fractures across all readers.

See table 11 in the EAR for full details
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Boneview accuracy across studies (all fractures)

Staff group (n studies)
Median sensitivity 

(range)
Median specificity (range)

Median % missed fractures 

(range)

Median % over diagnosis 

(range)

Any staff (7) 83 (75, 91) 93 (65, 99) 17.3% (8.6, 25.0) 7.4% (0.6, 35.0)

Less experienced staff (3) 79 (74, 89) 97 (93, 98) 21.3% (11.2, 25.7) 3.3% (1.7, 7.4)

Mixed or unclear staff (6) 81 (75, 91) 90 (65, 97) 19.0% (8.6, 25.0) 9.8% (2.6, 35.0)

Senior and expert staff (1) 88 (NA) 99 (NA) 11.7% (NA) 0.6% (NA)

The EAG noted that BoneView showed high sensitivity and specificity, irrespective of the reader group. However, median numbers of 

missed fractures (all fracture analyses) exceeded 15% for all readers except the senior and expert reader group. In general, BoneView 

had improved specificity relative to sensitivity, with fewer false positives than missed fractures.
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Boneview accuracy across studies (by fracture site)

Staff group and fracture site (n studies)
Median sensitivity 

(range)

Median specificity 

(range)

Median % missed 

fractures (range)

Median % over 

diagnosis (range)

Mixed or unclear staff, hand/wrist (4) 89 (80, 96) 92 (88, 95) 13.3% (8.3, 20.5) 9.4% (7.8, 13.3)

Senior and expert staff, hand/wrist (2) 89 (88, 90) 92 (NA) 11.7% (NA) 7.4% (NA)

Mixed or unclear staff, foot/ankle (4) 89 (71, 98) 93 (80, 96) 11.6% (1.8, 30.0) 10.4% (6.8, 20.8)

Senior and expert staff, foot/ankle (1) 83 (NA) NR NR NR

Mixed or unclear staff, hip (1) 93 (NA) 99 (NA) NR NR

Less experienced staff, non-obvious fractures (1) 56 (NA) 79 (NA) 43.8% (NA) 21.1% (NA)

Mixed or unclear staff, non-obvious fractures (1) 83 (NA) NR 16.7% 100%

Senior or expert staff, non-obvious fractures (1) 81 (NA) 89 (NA) 18.8% (NA) 10.5% (NA)

Sensitivity for non-obvious fractures was improved compared to the results for unassisted, although the rate of missed fractures and 

false positives was still high in the less experienced staff group (43.8% and 21.1%).
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RBfracture accuracy across studies

Staff group and fracture site (n 

studies)

Median sensitivity 

(range)
Median specificity (range)

Median % missed fractures 

(range)

Median % over diagnosis 

(range)

Any staff, all fractures (3) XX (XX, XX) XX (XX, XX) XX (XX, XX) XX (XX, XX)

Less experienced staff, all 
fractures (2) XX (XX, XX) XX (XX, XX) XX (XX, XX) XX (XX, XX)

Mixed or unclear staff, all 
fractures (3) XX (XX, XX) XX (XX, XX) XX (XX, XX) XX (XX, XX)

Senior and expert staff, all 
fractures (1) XX (XX, XX) XX (XX, XX) XX (XX, XX) XX (XX, XX)

Junior, hip (1) XX (XX, XX) XX (XX, XX) XX (XX, XX) XX (XX, XX)

Mixed or unclear, hip (2) XX (XX, XX) XX (XX, XX) XX (XX, XXX) XXX (XX, XXX)

The EAG noted that RBfracture showed good sensitivity and specificity across all studies, however rates of false positives across 

reader experience levels were similar to unassisted readers. 
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Rayvolve accuracy across studies

Staff group and fracture site (n 

studies)

Median sensitivity 

(range)
Median specificity (range)

Median % missed fractures 

(range)

Median % over diagnosis 

(range)

Any staff, all fractures (2) 94 (93, 96) 83 (70, 85) 6.1% (4.4, 7.4) 16.9% (14.7, 29.6)

Junior staff, all fractures (1) 94 (NA) 85 (NA) 6.1% (NA) 14.7% (NA)

Mixed or unclear staff, all 
fractures (2) 94 (93, 96) 77 (70, 83) 5.9% (4.4, 7.4) 23.3% (16.9, 29.6)

Mixed or unclear staff, 
hand/wrist (1) 98 (NA) 75 (NA) 2.1% (NA) 25.4%

Mixed or unclear staff, 
foot/ankle (1) 91 (91, 92) 67 (63, 72) 8.0% (7.1, 8.9) 32.8% (27.9, 37.7)

Two studies evaluated Rayvolve, both of which reported high sensitivity but poor specificity, particularly for hand/wrist and foot/ankle 

fractures. The EAG considered this was a feature of the technology algorithm, to prioritise missed fractures over false positives. Accordingly, 

specificity was comparable with unassisted diagnosis, while sensitivity was generally improved. 
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TechCare Alert accuracy across studies

Staff group and fracture site (n 

studies)

Median sensitivity 

(range)
Median specificity (range)

Median % missed fractures 

(range)

Median % over diagnosis 

(range)

Any staff, all fractures (2) 93 (90, 95) 98 (93, 98) 7.1% (5.1, 9.8) 1.9% (1.9, 7.5)

Junior staff, all fractures (1) 95 (NA) 98 (NA) 5.1% (NA) 1.9% (NA)

Mixed or unclear staff, all 
fractures (1) 90 (NA) 93 (NA) 5.1% (NA) 1.9% (NA)

Senior and expert staff, all 
fractures (1) 93 (NA) 98 (NA) 7.1% 1.9%

Mixed or unclear staff, 
hand/wrist (1) 94 (NA) 92 (NA) 6.2% (NA) 8.3% (NA)

Mixed or unclear staff, 
foot/ankle (1) 88 (85, 90) 91 (90, 92) 11.9% (9.5, 14.3) 8.6% (7.9, 9.2)

Two studies evaluated TechCare Alert, with no crossover in the reader groupings. Both reported high sensitivity and specificity 

estimates.  
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Diagnostic accuracy across studies in paediatric participants (all 
fractures)

Staff group and intervention (n 
studies)

Median sensitivity 
(range)

Median specificity (range)
Median % missed fractures 

(range)
Median % over diagnosis 

(range)

Mixed or unclear staff, 
unassisted (4)

78 (73, 100) 91 (77, 95) 22.6% (0.0, 26.7) 9.3% (5.6, 22.5)

Mixed or unclear staff, 
BoneView (2)

91 (83, 100) 91 (30, 92) 8.7% (0, 17.3) 9.0% (8.0, 10.0)

Mixed or unclear staff, 
RBFracture (2) XX (XX, XX) XX (XX, XX) XX (XX, XX) XX (XX, XX)

Senior and expert staff, 
unassisted (1) XX (XX, XX) XX (XX, XX) XX (XX, XX) XX (XX, XX)

Senior and expert staff, 
RBFracture (1) XX (XX, XX) XX (XX, XX) XX (XX, XX) XX (XX, XX)

No diagnostic accuracy data in children and young people was available in a less experienced reader group only. In mixed or unclear 

experience readers, BoneView and RBfracture improved median sensitivity for detecting fractures, though made no clear difference to 

specificity. 
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Subgroup evidence availability

• Five1-5 studies included a mix of adults, children and young people, with 23,4 reporting subgroup data specifically in children and 

young people. 

• Two6,7 studies were conducted only in children and young people

• No studies reported frailty measures for participants and no studies reported information on the number of participants with 

diseases that affect bone health. 

1.Meetschen et al. 2024; 2. Canoni-Meynet et al. 2022; 
3. Oppenheimer et al. 2023; 4. Bachmann et al. 2024; 
5. Bousson et al. 2023; 6. Nguyen et al. 2022; 7. Yogendra [unpublished]
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X-ray reading time

Data on X-ray reading time with and without AI assistance was available for 3 technologies: BoneView (4 studies), RBfracture (2 

studies) and Rayvolve (1 study). 

• There were no noticeable differences in reading time across the staff groupings.

• BoneView and Rayvolve were both associated with a reduction in X-ray reading times across all staff groups: 

• BoneView 2.6 to 13 seconds per X-ray

• Rayvolve 7 seconds per X-ray

• One study reported that RBfracture was associated with ************************************************* 

***************.

• There were large standard deviations around reading time in all studies, which may be due in part to the reading time varying 

widely by type and complexity of the fracture. 

• The EAG was also concerned about the reliability of how reading time would be measured in studies, and potential differences in 

the way this was defined and recorded between studies. 

AIC

Reading times for all fracture types by staff experience group are shown in table 10 
(page 77) in the EAR
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Summary of clinical effectiveness evidence

• There was a trend (across technologies and reader groups) for the AI technologies to improve sensitivity with little improvement 

in specificity

• Differences in accuracy between the technologies are uncertain due to limited evidence and variation in study designs

• Very few studies are specific to emergency care settings and all were associated with limitations due to risk of bias or uncertain 

generalisability. 

• Fractures were still missed with AI assisted interpretation in all reader groups. Reported rates of missed fractures across all 

studies and fracture types ranged from 1.8% to 43.8% 

• In children and young people, 2 key studies reported improved sensitivity but little improvement to specificity

• No evidence for people who are frail or with conditions that affect bone health and long-term recovery
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Summary of key diagnostic accuracy results 
Boneview:

• Key studies reported improvements in sensitivity and specificity, across all fracture types.

• Improved sensitivity and to a lesser extent specificity, irrespective of the reader group

• In general, BoneView had improved specificity relative to sensitivity, with fewer false positives than missed fractures.

RBfracture:

• Key study reported improved sensitivity and specificity in the less experienced reader group when using RBfracture to help diagnose mixed 

fractures

• Showed high sensitivity and specificity across all studies, however rates of false positives across reader experience levels were similar to 

unassisted readers

Rayvolve:

• Key study reported improved sensitivity in less experienced and mixed reader groups. Specificity (where reported) was similar with or 

without AI assistance. 

• Across all studies poor specificity, particularly for hand/wrist and foot/ankle fractures. Specificity was comparable with unassisted diagnosis, 

while sensitivity was generally improved

Techcare Alert:

• In key studies and across all studies, Techcare Alert showed high sensitivity and specificity
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Ongoing studies and evidence
Study AI technology Primary outcomes Completion/end date

AI assisted detection of fractures 
on X-rays (FRACT-AI) study 
(NCT06130397)

Boneview
Diagnostic accuracy (sensitivity and specificity) of the AI 
algorithm alone, diagnostic accuracy of readers with and 
without AI assistance, and reader speed with and without AI

June 2025 (estimated)

Paediatric Fracture Study 
(NIHR301322)

Boneview
Diagnostic accuracy (sensitivity and specificity) of the AI 
algorithm alone, diagnostic accuracy of readers with and 
without AI assistance.

August 2026

XX (XX, XX) XX (XX, XX) XX (XX, XX) XX (XX, XX)

5 NHS based real world data 
collection studies

RBfracture

Increase in productivity through
time-saving; reductions in missed fractures (ED), CT scans, 
inappropriate referrals to
fracture clinic, equivocal findings. Post-market surveillance 
data and standalone performance

Late 2024 to late 2025

AutoRayValid-RBfracture RBfracture

Multi-national, retrospective generalisability study. Aims to 
assess AI impact on diagnostic thinking by analyzing 
consecutive cases with clinical data, providing insights into 
fracture detection and clinical decision-making

Not reported

https://classic.clinicaltrials.gov/ct2/show/NCT06130397
https://fracturestudy.com/
https://www.medrxiv.org/content/10.1101/2023.08.15.23294116v1
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Economic evaluation
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Review of the economic literature (1)

See section 4.1 of the EAR for details of the evidence searches used to identify relevant economic studies. 

• No economic evaluations of AI to detect fractures were identified

• The EAG identified 4 studies that were used to inform health state costs and utilities: 

1. Rua et al. (2020) used to inform modelling of hand/wrist fractures 

2. Nwankwo et al. (2022) used to inform modelling of foot/ankle fractures

3. Low et al. (2021) used to inform modelling of hip fractures

4. Judge et al. (2016) used to inform modelling of hip fractures
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Economic model (1)

• The EAG developed a de novo model to explore the potential cost-effectiveness of AI-assisted diagnosis compared with unassisted 

diagnosis of fractures in an urgent care setting from the perspective of the NHS and Personal Social Services. 

• The EAG divided the analysis into 3 separate fracture sites, focussing on fractures of the

• wrist and hand

• ankle and foot

• hip

• These 3 sites were considered to potentially gain the greatest benefit from AI-assisted diagnosis. 

• Separate models were used because costs and consequences of these fractures differed substantially

Outputs of these were then weighted based on the fracture case mix of a typical urgent care setting to estimate the overall cost-

effectiveness of AI-assisted diagnosis.
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Economic model (2)

• The EAG said that the model described represents a rapid overview of the likely costs and consequences associated with use of AI 

algorithms to assist in the diagnosis of fracture, and unassisted diagnosis, in an urgent care setting. 

• The purpose of this analysis was to explore whether there was a plausible case for any of the technologies to represent value for 

money for the NHS / taxpayer and to identify where further evidence generation may improve the certainty of the results.
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Economic model structure

Square = decision node; Circle = chance node; Triangle = terminal node. 

• The model structure comprised a decision 
tree incorporating the prevalence, 
sensitivity and specificity and cost per 
diagnosis of a strategy

• Base case assumed that patients present 
in an emergency department with a 
suspected fracture: ankle or foot, wrist or 
hand, and hip. 

• Costs of ED attendance and X-ray common 
to all comparators and so was excluded 
from the analysis. 

• Difference in cost between techs limited 
to cost per scan.

D+ = prevalence (i.e. 
probability of a 

suspected fracture 
being a true fracture)

D- = 1 - D+ 

T+ = conditional probability of a positive result 
from review of X-ray 

(in branch shown this is sensitivity).
Model allows for 1 or 2 reviews.

Costs and QALYs 
are assigned to 
terminal nodes

For further details see section 8.3.1 in the EAR
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Base case prevalence, sensitivity and specificity

Two of the studies1,2 identified in the review were selected as sources for prevalence and sensitivity and specificity of each diagnostic 

strategy: 

Bousson et al. (2023) provided a directly comparison between BoneView, Rayvolve and TechCare Alert. Data were disaggregated by 

foot, ankle and hand (but not hip). For the base case, the EAG estimated a mean sensitivity and specificity for foot and ankle, 

assumed hand applied equally to wrist, and assumed the sensitivity and specificity of hip fracture diagnosis was equal to that for ‘all 

fractures’. 

Bachmann et al. (2024) compared RBfracture assisted to unassisted diagnosis in a wide range of fracture types, reporting results by 

‘mixed’ staff types, ED trainees and trauma care nurses. This was used as the source study for RBfracture and unassisted diagnosis. As 

data were not disaggregated by fracture type, the base case assumed the same sensitivity and specificity for all fracture types for 

RBfracture and unassisted diagnosis.

1. Bousson et al. 2023; 2. Bachmann et al. 2024
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Base case prevalence, sensitivity and specificity

Technology
Sensitivity 

(foot/ankle)
Specificity 

(foot/ankle)
Sensitivity 

(hand/wrist)
Specificity 

(hand/wrist)
Sensitivity (hip) Specificity (hip) Source/notes

BoneView 94 86 92 92 91 91
Bousson et al. 
2023

Rayvolve 91 67 98 75 93 70
Bousson et al. 
2023

TechCare Alert 88 91 94 92 90 93
Bousson et al. 
2023

RBfracture 83 90 83 90 83 90
Bachmann et al. 
2024 (A&E 
trainee)

Unassisted 74 87 74 87 74 87
Bachmann et al. 
2024 (A&E 
trainee)

Fracture site Prevalence Source

Ankle/foot 24.1% 

Bousson et al. 2023Hand/wrist 30.9%

Hip 21.7%
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Modelling key assumptions 

Assumption EAG’s rationale

AI-assisted diagnosis was limited to ankle/foot, wrist/hand and hip 
fractures

3 sites were considered to potentially gain the greatest 
benefit from AI-assisted diagnosis

Sensitivity and specificity for hand applied equally to wrist EAG assumption

Single read per scan Source studies estimating the sensitivity and specificity of 
diagnosis assumed a single read of a scan

Sensitivity and specificity of the diagnosis depends on the grade of 
staff reading the scan, rather than the setting where it took place

EAG assumption

Prevalence by fracture type was 12.5% ankle, 7.5% wrist and 12.5% 
hip. EAG assumed that these proportions represented the base case 
distribution 

Clinical opinion

Model specific assumptions are described separately (see slides 51 to 53) 
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Foot and ankle fractures: Costs and QALYs
The time horizon for the foot and ankle model was 12 months.

Health state Mean QALYs
Mean costs (2022/23 

prices)
Model specific assumptions 

True 
positives

0.722 (weighted average) £1,837 
50% treated with a brace and 50% with a cast. 
Ankle fractures would be healed within 12 months. 

True 
negatives

0.796 No cost

Only incur the cost of an ED attendance (excluded)
Endure the fracture health state utility (0.225) for 
2 weeks, then revert to ‘healed’ health state utility (0.818) for the 
rest of the year

False 
positives

0.796 £1,837
Incur the same cost as true positives and the same QALYs as true 
negatives. 

False 
negatives

0.697 £1,986
Re-present in the ED after 2 weeks, where additional investigations 
and correct diagnosis is made. Incur the same costs as true 
positives, plus cost of additional examinations. 

Source Nwankwo et al. (2023)

The utility associated with ankle/foot fracture (0.225) was considered to lack face validity for a soft tissue injury and so was explored 

in a scenario analysis (see slide 56)
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Hand and wrist fractures: Costs and QALYs

The time horizon for the hand and wrist model was 6 months. 

Health state Mean QALYs Mean costs (2022/23 prices) Assumptions

True positives 0.346 £1,166
Utilities for the first 3 months are equal to 1 standard deviation 
below those reported in Rua et al. 2020. 

True negatives 0.393 £773 Utilities equal to those reported in Rua et al. 2020

False positives 0.393 £850
Resource use associated to this health state is 10% higher than that 
of true negatives

False negatives 0.329 £1,056

Patients return to urgent care 2 weeks after initial presentation and 
receive correct diagnosis. 
Utility from Rua et al. 2020 at baseline represents the utility for 
those 2 weeks. 
No disutilities assumed in that period. 

Source Rua et al. 2020
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Hip fractures: Costs and QALYs

Health state Duration (weeks) Mean utility QALYs 
(discounted)

Mean 
costs

Assumptions

TP: immediate post fracture 2 0.42

9.275 £57,471 1 index surgery followed by a second surgeryTP: first year 50 0.59

TP: beyond first year 884 0.69

TN: immediate post-injury 2 0.42
10.751 No cost Incur only cost of ED attendance (excluded). 

TN: baseline utility for age 65-74 years 934 0.79

FP: immediate post-injury 4 0.42

10.751 £57,471
Assumed to have surgery. Incur same cost as true 
positives and same QALYs as true negatives.

FP: first year 48 0.59

FP: baseline utility for age 65-74 years 884 0.79

FN: immediate post fracture 4 0.42

9.268 £57,961
Incur same costs as true positives with additional 
costs of an ED attendance and additional 
investigations (1 CT assumed). 

FN: first year 48 0.59

FN: beyond first year 884 0.69

Source Low et al. 2021 
Judge et 
al. 2016

The hip model had a lifetime time horizon.

TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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Overall impact of AI-assisted diagnosis in an urgent care setting

• Clinical advice to the EAG was that for 2022-23, there were approximately 25.3 million ED attendances in England and that 

fractures typically account for 2-4%

• Clinical opinion on the prevalence by fracture type was that around 12.5% are ankle, 7.5% wrist and 12.5% hip

• EAG used these proportions to estimate the overall impact of diagnosis in an urgent care setting with 350–400 daily attendances, 

which results in 1,334 attendances for fracture a year

Base case distribution of fracture types (annual)

Fracture type Base case proportions Number of attendances

Ankle/Foot 38.5% 513

Wrist/Hand 23.0% 308

Hip 38.5% 513

Total 1,334
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Costs 

• In the base case the cost per scan was based on 1,334 scans per year

• The cost of the index presentation and X-ray was excluded from the analysis as it is common to all arms

• For health states in which additional presentations occur (false negatives), a mean cost of £149.04 was used

• Cost per scan for TechCare Alert XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Technology Cost per Scan Notes

BoneView £1.00 Notional cost

Rayvolve £1.00 No data received.  Notional cost

RBfracture XXXX XXXXXXXXXXXXXXXX

TechCare Alert XXXX XXXXXXXXXXXXXXXX

Unassisted £0.00 By definition
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Scenario analyses
Scenario Change Scenario value(s)

1

Sensitivity and specificity

Optimistic scenario assumed the lowest sensitivity and specificity for unassisted 
diagnosis and highest for each technology, based on a review of all source studies. See 
table 38 in the EAR.

2
Pessimistic scenario assumed the highest sensitivity and specificity for unassisted 
diagnosis and lowest for each technology, based on a review of all source studies. See 
table 38 in the EAR.

3

Volume-based cost per scan

Low volume, high cost for those technologies with pricing based on volume. See table 39 
in the EAR

4
High volume, low cost for those technologies with pricing based on volume. See table 39 
in the EAR

5 Reading time based on Registrar grade reader 10 second reduction and 13.9p saving per X-ray. See table 40 in the EAR

6 Reading time based on Consultant reader 10 second reduction and 30.3p saving per X-ray. See table 40 in the EAR

7
Utility values for true negative ankle and foot 
fractures

0.727. Equivalent to EQ5D utility for a person with some mobility problems and some 
pain (see pages 112 to 113 in the EAR).

8 Use case – all fractures
Pessimistic scenario, additional cost for fractures in other places but no additional 
benefit. See table 41 in the EAR. 

9 Number of reads
Second read of all X-rays rather than single read as used in the base case. See page 113 in 
the EAR 
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Base case results: Overall

Intervention Cost (95%CI) QALYs (95%CI) INHB20k (95%CI)

BoneView £6,901 (£5,099, £8,868) 4.41 (2.344, 6.187) 0.032 (-0.003, 0.072)

Rayvolve £10,486 (£7,848, £13,306) 4.41 (2.344, 6.187) -0.148 (-0.207, -0.096)

RBfracture XXXXXXXXXXXXXXXXX) 4.41 (2.344, 6.187) XXXXXXXXXXXXXXX

TechCare Alert XXXXXXXXXXXXXXXXX) 4.41 (2.344, 6.187) XXXXXXXXXXXXXXX

Unassisted £7,515 (£5,534, £9,676) 4.41 (2.343, 6.186) -

• Overall, with the exception of Rayvolve, the AI-assisted diagnostic algorithms were associated with a positive incremental net 

health benefit compared with unassisted diagnosis at £20,000 and £30,000 thresholds.

• 95% confidence intervals in most cases crossed zero, both for all separate fracture sites/types and when considered together. 

• Due to data limitations, the EAG advised against direct comparisons between different AI algorithms

See table 45 in the EAR for further details including INHB30k results. Abbreviations: 
CI, confidence interval; INHB20k, incremental net health benefit at willingness to pay 
threshold of £20k; 
QALY, Quality Adjusted Life Year
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Base case results: Ankle and foot

Intervention Cost (95%CI) QALYs (95%CI) INHB20k (95%CI)

BoneView £638 (£518, £766) 0.786 (0.773, 0.798) 0.001 (-0.003, 0.006)

Rayvolve £903 (£773, £1,043) 0.786 (0.773, 0.798) -0.012 (-0.018, -0.007)

RBfracture XXXXXXXXXXXXXX 0.785 (0.772, 0.797) XXXXXXXXXXXXXXXX

TechCare Alert XXXXXXXXXXXXXX 0.785 (0.773, 0.798) XXXXXXXXXXXX

Unassisted £634 (£519, £758) 0.784 (0.772, 0.797) -

• There was minimal difference in QALYs between the different technologies and unassisted diagnosis.

• Costs varied more than QALYs for ankle and foot fractures

• Only Rayvolve had a significantly different cost to unassisted reads

See table 42 in the EAR for further details including INHB30k results. Abbreviations: 
CI, confidence interval; INHB20k, incremental net health benefit at willingness to pay 
threshold of £20k; 
QALY, Quality Adjusted Life Year
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Base case results: Wrist and hand

Intervention Cost (95%CI) QALYs (95%CI) INHB20k (95%CI)

BoneView £897 (£807, £989) 0.398 (0.386, 0.409) 0.000 (-0.001, 0.002)

Rayvolve £908 (£827, £990) 0.398 (0.386, 0.409) 0.000 (-0.002, 0.002)

RBfracture XXXXXXXXXXXXXX 0.397 (0.386, 0.409) XXXXXXXXXXXXXXXX

TechCare Alert XXXXXXXXXXXXXX 0.398 (0.386, 0.409) XXXXXXXXXXXXXXXX

Unassisted £893 (£808, £979) 0.397 (0.386, 0.408) -

See table 43 in the EAR for further details including INHB30k results. Abbreviations: 
CI, confidence interval; INHB20k, incremental net health benefit at willingness to pay 
threshold of £20k; 
QALY, Quality Adjusted Life Year

• There was minimal difference in costs and QALYs between the different technologies and unassisted reads.
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Base case results: Hip

Intervention Cost (95%CI) QALYs (95%CI) INHB20k (95%CI)

BoneView £16,762 (£14,993, £18,640) 10.431 (5.660, 13.075) 0.080 (-0.010, 0.179)

Rayvolve £25,806 (£23,810, £27,845) 10.431 (5.660, 13.075) -0.372 (-0.481, -0.259)

RBfracture XXXXXXXXXXXXXXXXXXXX 10.431 (5.659, 13.075) XXXXXXXXXXXXXXX

TechCare Alert XXXXXXXXXXXXXXXXXXXX 10.431 (5.660, 13.075) XXXXXXXXXXXXXXX

Unassisted £18,363 (£16,179, £20,612) 10.431 (5.659, 13.075) -

• There was very little difference in QALYs between assisted and unassisted reads for hip fracture.

• Rayvolve had a significantly higher cost than unassisted reads.

See table 44 in the EAR for further details including INHB30k results. Abbreviations: 
CI, confidence interval; INHB20k, incremental net health benefit at willingness to pay 
threshold of £20k; 
QALY, Quality Adjusted Life Year
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Base case results: maximum economically justified price

EJP threshold BoneView Rayvolve RBfracture TechCare Alert Unassisted

£20k/QALY £632 -£2,956 XXXX XXXX 0

£30k/QALY £640 -£2,948 XXXX XXXX 0

• The EAG also calculated the maximum economically justifiable price for each of the technologies. This is the maximum cost per 

scan that would still result in a technology being cost effective with an ICER of £20k or £30k per QALY gained.

• The minimum economically justified prices were generally higher than the per-scan prices proposed by the companies and used 

in the base case model (see slide 55). 

See table 47 in the EAR for further details including INHB30k results. Abbreviations: 
EJP, economically justifiable price; ICER, incremental cost effectiveness ratio
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Scenarios results

Intervention INHB20k INHB20k 95%CI

BoneView
XXXXX XXXXXXXXXX

Rayvolve
XXXXX XXXXXXXXXX

RBfracture
XXXXX XXXXXXXXXX

TechCare Alert
XXXXX XXXXXXXXXX

Unassisted - -

Optimistic diagnostic accuracy

Pessimistic diagnostic accuracy

Intervention INHB20k INHB20k 95%CI

BoneView
XXXXX XXXXXXXXXX

Rayvolve
XXXXX XXXXXXXXXX

RBfracture
XXXXX XXXXXXXXXX

TechCare Alert
XXXXX XXXXXXXXXX

Unassisted - -

CI, confidence interval; INHB20k, incremental net health benefit at willingness to pay 
threshold of £20k; QALY, Quality Adjusted Life Year

• Only scenarios adjusting diagnostic accuracy 

had a large impact on model results. 

• Other scenarios including low and high 

volume based pricing, reduction in reading 

times, higher utility values for true negative 

ankle/foot fractures, use across all fractures, 

and adding a second read did not affect the 

model results. 

• Full scenario analysis results are presented in 

table 48 (pages 117 to 120) in the EAR. 
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Summary of economic evidence 

• Early economic modelling suggests that most of the AI technologies considered have the potential to be cost effective.

• Most of the AI technologies had a positive INHB at £20k and £30k thresholds although 95% confidence intervals in most cases 

crossed zero

• The lower specificity of Rayvolve leads to higher costs dues to more people being referred for further investigation

• EAG noted that the potential cost-effectiveness appeared to be driven by reductions in costs rather than a gain in QALYs

• EAG cautions against using this analysis to compare one AI algorithm against another due to data limitations
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Evidence gaps and research recommendations

Key evidence gaps identified by the EAG included:

• Lack of prospective, consecutively sampled, comparative studies based in clinical settings comparable to the NHS urgent care 

setting, with staff/reader groups that would typically perform the initial interpretation.

• Studies designed to explore changes in outcomes according to key factors that would inform use of the technology, such as reader 

experience, fracture case mix, and determinants of patient outcomes, such as patient age, frailty, and prevalence of health 

conditions affecting bone health.

• Longer term costs and consequences of missed fracture diagnoses

• System level outcomes such as number of referrals to virtual fracture clinics or time spent in ED
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Health Tech Programme 

Artificial intelligence software to help detect fractures in the emergency department 
(provisional title) 

Professional organisation submission 

 

  

Thank you for agreeing to give us your organisation’s views on this technology and its possible use in the NHS. 

You can provide a unique perspective on the technology in the context of current clinical practice that is not typically available 
from the published literature. 

To help you give your views, please use this questionnaire. You do not have to answer every question – they are prompts to 
guide you. The text boxes will expand as you type.  

Information on completing this submission 

• Please do not embed documents (such as a PDF) in a submission because this may lead to the information being 
mislaid or make the submission unreadable 

• We are committed to meeting the requirements of copyright legislation. If you intend to include journal articles in your 
submission you must have copyright clearance for these articles. We can accept journal articles in NICE Docs. 

• Your response should not be longer than 13 pages. 
 
Any confidential information provided should be underlined and highlighted. Please underline all confidential information, and 
separately highlight information that is ‘commercial in confidence’ in blue and all that is ‘academic in confidence’ in yellow.  
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About you 

1. Your name 

Tracy O’Regan 

2. Name of organisation The Society of Radiographers 

3. Job title or position Professional officer clinical imaging and research 

4. Are you (please select 
Yes or No): 

An employee or representative of a healthcare professional organisation that represents clinicians? Yes   

5a. Brief description of 
the organisation 
(including who funds it). 

For over 100 years, the Society of Radiographers (SoR) has advocated for radiography professionals 

at the heart of patient care. SoR is both a trade union and the UK professional body for the diagnostic 

imaging and radiotherapy workforces including diagnostic and therapeutic radiographers, 

sonographers, support workers, assistant practitioners, and pre-registration students. 

5b. Has the organisation 
received any funding 
from any company with 
a technology included in 
the evaluation in the last 
12 months? [Please refer 
to the final scope for a 
full list of technologies 
included. The final 
scope is due to be 
published on 2 July 
2024]. 

If so, please state the 
name of company, 
amount, and purpose of 
funding. 

No. 
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5c. Do you have any 
direct or indirect links 
with, or funding from, 
the tobacco industry? 

No 

 

The aim of treatment for this condition 

6. What is the main aim 
of this technology? (For 
example, initial 
diagnosis, 

clinical monitoring, 
treatment triage 

assessing stages of 
disease progression or 
risk stratification.) 

Clinical decision support to diagnostic radiographers and healthcare professional colleagues practicing 

in urgent care (preliminary/initial diagnosis). 

7. In your view, is there 
an unmet need for 
patients and healthcare 
professionals in this 
condition? 

Yes, in most healthcare settings – primarily where there is an absence of 24hour availability of hot 

reporting (immediate definitive clinical report from radiology services – reporting radiographer, MSK 

sonographer, or radiologist). 

 

What is the expected place of the technology in current practice? 

8. How is the condition 
currently treated in the 
NHS?  

The technology does not apply to a single ‘condition’, body part, or type of fracture. It potentially covers 

the whole range of MSK fractures to appendicular and axial skeleton across the life-course of patients’ 

and possibly beyond, when a patient does not survive life threatening injuries. Treatment varies 

according to type of fracture, service, and patient preference. 
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9a. Are any relevant clinical 
guidelines we should be 
aware of, and if so, which?  

Yes, the relevant NICE and GIRFT guidance has been listed in the online document, July 2024 NICE 
Artificial intelligence software to help detect fractures on X-rays in urgent care -  Final scope.  

9b. Is the pathway of care 
well defined? Does it vary 
or are there differences of 
opinion between 
professionals across the 
NHS? (Please state if your 
experience is from outside 
England.) 

SoR represents professionals who work across the 4 nations of the UK. In all nations the pathways of 

care are dependent on local service provision, staffing, facilities, and need of local populations.  

Urgent care is provided in various ways; in the main that is not due to differences of opinion between 

professionals. Instead, there are different models due to system pressures and local population needs. 

Broadly those models include the same staffing groups mentioned in the final scope although we note 

that while some of our Allied Health Professional (AHP) colleagues – physiotherapists -  are considered 

in the final scope and protocol for this project/programme there is lack of reference to treatment and 

care provided in acute urgent settings by other AHP colleagues. Particularly occupational therapists 

and potentially social workers who can assess patients with fracture for discharge planning. 

 

9c. What impact would the 
technology have on the 
current pathway of care? 

That is dependent on the performance of the technology in terms of accuracy and efficiency. Different 

AI products appear to have different levels (or claims) to accuracy and efficiency, provide varying 

services, for varying populations. This is clearly recognised and has been considered in detail by the 

NICE specialist committee members, at the NICE June 2024 scoping workshop, and by the external 

assessment group. 

SoR hope that the main impact to care will be reduction of inaccurate diagnosis resulting from lack of 

access to immediate definitive diagnosis from radiology services (reporting radiographer or radiologist). 

There is, however, the potential for bias, over-diagnosis of fracture, or incorrect diagnosis from poorly 
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performing AI algorithm. The current requirements of Ionising Radiation (Medical Exposure) 

Regulations (IRMER) mitigate for this with the need for oversight from a healthcare professional who is 

trained and qualified to provide that oversight. 

 

10a. Will the technology be 
used (or is it already used) 
in the same way as current 
care in NHS clinical 
practice?  

Yes, although if proven reliable and trustworthy in real world settings, there will be further potential for 

safe, accurate, and efficient systems to provide clinical decision support that enables innovation in 

provision of services in the future. This has a potential impact on roles of diagnostic radiographers in 

the future and may allow for development of radiographer discharge from urgent care for which there is 

some evidence of positive impact for patient care, outcomes, and emergency department waiting times. 

10b. How does healthcare 
resource use differ 
between the technology 
and current care? 

It is too early to provide a definitive answer to this question because of the lack of real-world 

prospective trials for this technology. We note that several studies are ongoing, but this has been 

limited in scope and breadth of populations to date.  

We can make inferences from espoused potential, that the technology/software will reduce the 

inappropriate use of orthopaedic services/fracture liaison clinic and reduce the use of other imaging 

modalities/repeat imaging and recall to urgent care. It will not reduce the need for radiology services to 

provide a definitive clinical report (majority of which is reporting radiographer provision) in line with 

IR(ME)R and noting that AI algorithms listed in the programme do not assess for the full scope of 

pathologies that a reporter will highlight, including, for example, primary bone tumour, infection, foreign 

body, normal variants. 
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10c. In what clinical setting 
should the technology be 
used? (For example, 
primary or secondary care, 
specialist clinics.) 

The final scope for the project notes that assessment is in line with urgent care. That is reasonable 

given the stages of development of current AI algorithms for AI fracture detection. It is likely that once 

proven, this type of service would also be useful to services in community diagnostic centres, for 

assessment of injury sustained on inpatient wards, and for patients attending radiology directly from 

primary care referral with suspected fracture. SoR consider that alongside those further clinical settings 

for use of the technology, the technology and patient pathway may also be tailored to enable direct 

referral of patients to fracture liaison clinic for those people at further risk due to bone health or lifestyle 

factors. 

 

10d. What investment is 
needed to introduce the 
technology? (For example, 
for facilities, equipment, or 
training.) 

That is a difficult question to answer given the variability of digital services and architecture across 

England and the devolved nations. English imaging networks are classed by NHS England at variable 

levels of digital maturity. That has an impact on the costs to set up, deploy, and monitor the 

implementation of AI for MSK fracture detection. Onward surveillance will also have additional cost 

implications with questions about frequency of software update and service agreements, funding for 

collection of data and analysis/evaluation etc. 

 

NHSE AI Deployment Fund (AIDF) 2023-2025 will provide a comparator to some extent. We are aware 

that NICE do have representation on AIDF implementation board for lung cancer AI as do SoR, 

National Institute for Health Research, and Royal College of Radiologists. This is important to note 
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because this will allow the extrapolation and estimation of potential costs, capital, revenue, ongoing 

licensing etc. with input from various stakeholders and different lenses.  

 

NIHR / AIDF Rapid Service Evaluation Team (RSET) will also provide further evidence from the point of 

lung cancer AI tools (again, representation on the stakeholder panel from the NICE team noted). 

 

In addition, investment is needed for education and training of all staff who use the AI software. 

Investment is needed for thorough standardised research/evaluation of products, staff to lead 

development, and dissemination of findings.  

Investment is needed in literature and methods to inform patients about the use of AI in order that their 

fully informed consent to treatment is valid. 

 

11a. Do you expect the 
technology to provide 
clinically meaningful 
benefits compared with 
current care?  

Yes. SoR are aware that although 24-hour immediate definitive clinical diagnosis (hot report) is the gold 

standard of care that services are advised / would like to provide, this is rarely achieved. Clinically 

meaningful benefits will be in the form of reduction of missed fracture / delayed diagnosis in urgent care 

settings. 

11b. Do you expect the 
technology to increase 
length of life more than 
current care?  

Very rarely. 
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11c. Do you expect the 
technology to increase 
health-related quality of life 
more than current care? 

Yes, the main benefits of which are likely to be the reduction of pain and avoidable consequences of 

missed fractures.  

 

There will also be a public health benefit in terms of reduction of repeat imaging / use of onward CT 

imaging results in reduced radiation dose to individuals.  

 

It is important to point out that the missed diagnosis or delayed diagnosis of fractures does have an 

affect on the level of trust that patients, carers, and wider public place in healthcare systems. This is 

extremely important in relation to the prediction and prevention of disease. Patients’ level of trust in the 

healthcare system, in imaging diagnosis and services, is linked to their likelihood to attend for 

healthcare including screening services for example mammography, abdominal aortic aneurysm, 

DEXA/DXA etc. All relevant for quality of life with early diagnosis of disease. 

 

12. Are there any groups of 
people for whom the 
technology would be more 
or less effective (or 
appropriate) than the 
general population?  

Not in addition to those already listed in the final scope although we note that there is slight 

discrepancy, between final scope and final protocol for this project. While scope refers to older people 

the final protocol highlights frailty – SoR agree with this approach (final protocol) since not all older 

people are frail and not everyone with frailty is older. This is more inclusive of people with 

disabilities/immobility likely to affect bone health.  
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In the case of AI products, we would also like to highlight the importance of knowledge of geographical 

variations and local knowledge of regional pathologies affecting populations. For example, the 

prevalence of Pagets disease affecting the appendicular and axial skeleton in Northern English male 

populations would be relevant for deployment of AI in that region. 

 

 

The use of the technology 

13. Will the technology be 
easier or more difficult to 
use for healthcare 
professionals than current 
care? Are there any 
practical implications for 
its use (for example, 
additional clinical 
requirements, factors 
affecting patient 
acceptability or ease of use 
or additional tests or 
monitoring needed.)  

Because the AI products are only implemented in a small number of areas currently, it is difficult to be 

exact in this reply. It appears that when systems integrate fully with digital systems in use, when people 

understand how to use them and what the limitations are, they know what to do when there are errors or 

discrepancies and understand the governance of the products, when they trust the technology – then 

there are likely to be positive adaptations to practice. 

It appears that currently there is no reduction in workload stresses for staff, perhaps even increase in 

workload due to implementation, but this is common with all technological development. It may smooth 

the way for increased efficiencies, accuracy and innovation in the future. 

14. Do you consider that 
the use of the technology 
will result in any 
substantial health-related 
benefits that are unlikely to 
be included in the quality-

Level of trust in healthcare services, radiology and urgent care which can have an impact on attendance 

rates to screening, diagnosis and treatment in the future. 
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adjusted life year (QALY) 
calculation? 

15. Do you consider the 
technology to be 
innovative in its potential 
to make a significant and 
substantial impact on 
health-related benefits and 
how might it improve the 
way that current need is 
met? 

No, not innovative in what the technology provides for health-related benefits. If healthcare services were 

adequately funded and staffed to provide 24 hour immediate definitive report (hot reporting) then there 

would not be a requirement for the technology. The capability of AI products to determine MSK fracture 

on X-rays does not exceed the capability of people-reporting radiographers and radiologists-to diagnose 

fractures. Also, radiographers and radiologists still need to assess patient’s images for a plethora of 

associated disease, pathology, and conditions that are visible on images but AI software does not 

assess for. This does not reduce their workload in the long term, rather it may speed up the initial 

diagnosis or ruling out of a fracture during the individual patient’s attendance in urgent care. 

16. Does the use of the 
technology address any 
particular unmet need of 
the patient population? 

There are currently avoidable inequalities in access to definitive clinical diagnosis for individuals. That is 

due to either the services available to the person in the areas where they live or the day of 

week/weekend, or time of day that they attend urgent care. The technology may mitigate for that 

inequality to some extent. 

17. Are there any side 
effects or adverse effects 
associated with the 
technology and how do 
they affect the patient’s 
quality of life? 

No change to imaging procedure currently (imaging acquisition). In current care there is a margin of error 

in fracture diagnosis, and it is recognised that occult fractures will not be determined until a later time. 

Overdiagnosis of fracture (false positive) may have a limited affect on quality of life for a short period, 

only rarely if ever would that have long term affect on quality of life. 
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Sources of evidence  

17a. Do studies on use of 
the technology reflect 
current UK clinical 
practice? 

Studies have been retrospective not proven in real-world practice. We recognise that there are studies in 

progress, but this is still limited in comparison to the range of populations and variation across 

regions/nations also the range of types of fracture or axial, appendicular skeletal body region. 

17b. If not, how could the 
results be extrapolated to 
the UK setting?  

Theories of implementation science and change management indicate that the intricacies of healthcare 

and importantly local culture (among healthcare professionals) in the UK setting must be considered for 

the successful deployment of new technology. To date, few UK based/published AI studies have 

considered beyond retrospective comparison of accuracy and sensitivity of AI in comparison with clinical 

reporters. 

17c. What, in your view, 
are the most important 
outcomes, and were they 
measured in trials? 

--- 

17d. If surrogate outcome 
measures were used, do 
they adequately predict 
long-term clinical 
outcomes? 

--- 

17e. Are there any 
adverse effects that were 
not apparent in clinical 
trials but have come to 
light subsequently? 

There are anecdotal accounts from reporting radiographers that the deployment if AI for fracture 

detection in real-world settings has resulted in increased workload for fracture clinics and orthopaedic 

teams, with AI software not able to recognise adapted technique positioning, normal variants, or 

pathologies including arthritis and infection and inexperience healthcare professionals not recognising 
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those limitations. Out of hours, without a reporters guidance, referring staff who have trialled the software 

do not always recognise those errors and refer patients to clinics. More experienced staff (in terms of 

experience and confidence reading imaging) appear to be more confident to overrule the AI results. 

18. Are you aware of any 
relevant evidence that 
might not be found by a 
systematic review of the 
trial evidence?  

The experiences of reporting radiographers and radiologists who are using AI MSK fracture detection 

software have been reported in various methods of shared learning with colleagues. For example, 

continuing professional development study days/evening, shared learning sessions, poster and oral 

presentations at conferences, discussion among professional body advisory groups including SoR, 

British Institute of Radiology, and Royal College of Radiologists. 

19. How do data on real-
world experience 
compare with the 
available data? Are you 
aware of any ongoing 
studies? 

Not beyond the ongoing studies noted in the programme scope. 
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Equality 

20a. Are there any 
potential equality issues 
that should be taken into 
account when 
considering these 
technologies? 

The consideration of equalities issues in both the scope and protocol documents is excellent. The scope 

and range of people who are included in this assessment is immense; although it would be possible to 

delve further into certain aspects of inequality, for example, for people with certain conditions related to 

bone health, alcoholism, eating disorders etc but that is not appropriate given the scope, protocol and 

timescale for the project  

20b. Consider whether 
these issues are different 
from issues with current 
care and why. 

The additional factors mentioned above are routinely considered in usual care, different from the abilities 

of AI software, because healthcare professionals and trained reporters correlate clinical history, 

mechanism of injury, clinical presentation in the urgent care setting, with the images that they are 

reading. Not all healthcare professionals viewing images have the breadth and depth of knowledge to do 

that.  AI software is also not at a stage that it is able to do that. If that is possible in the future, that would 

be a further improvement to the output of AI as a clinical decision support tool to the referrer viewing an 

image in urgent care – more able to consider variability and personalise with tailored diagnosis.  

In terms of organisational and service level inequality, there is potential for the use of AI software to 

decrease current inequalities in access to diagnosis in centres where hot reporting / preliminary clinical 

evaluation is not running – either due to service design, day of week, or time of day along with issues 

related to the ability to accurately read the images across various staff groups or level of competence. 

 

 

https://www.nice.org.uk/about/who-we-are/policies-and-procedures/nice-equality-scheme
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Key messages 

21. In up to 5 bullet 
points, please summarise 
the key messages of your 
submission. 

• SoR are supportive of the implementation, research, and evaluation of AI for MSK fracture detection 

software. 

• SoR highlight the importance of training and education of staff who will use or read the outcomes of the 

software, especially with respect to the limitations of the software. 

• SoR consider it imperative that resources are available to staff using the software in order that they may 

ensure patient consent is fully informed. 

• SoR view the development of AI systems within clinical imaging as a step toward further innovation of 

services for patients. This will involve the development of professionals to undertake new roles, for example, 

to lead in the implementation and surveillance of AI software, to develop that ways in which patient pathways 

of care can be improved, including earlier diagnosis and appropriate treatment, onward referral, or discharge 

of patients. 

• SoR additionally would like to highlight that the use of AI software for MSK fracture detection should also be 

regarded as a tool for public health, early diagnosis, prediction and prevention of further fracture for patients 

with development of links to fracture liaison clinics. 

 

Thank you for your time. 

Please log in to your NICE Docs account to upload your completed submission. 

Your privacy 
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The information that you provide on this form will be used to contact you about the topic above. 

Please select YES if you would like to receive information about other NICE topics - YES   

For more information about how we process your personal data please see our privacy notice. 

https://www.nice.org.uk/privacy-notice
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External Assessment Report: Changes after 
stakeholder consultation 

Editorial corrections not tabulated. 

Section Description of change 

4.2.1 Corrected ‘unassisted’ to ‘assisted’ 

4.2.1 Clarified description of Fu 2024 study design 

Table 9 Corrected unassisted diagnostic accuracy for Nguyen 2022 

Table 11 Corrected specificity for “Unassisted, mixed or unclear staff, 
hand/wrist” 

Table 21 Standard deviations removed for Durations 1 and 2 

8.3.4 Costs specified in text for False Negatives 

Table 22 Added new table showing calculation of QALYs for false negative 
ankle/foot fractures 

Tables 24, 
26, 28, 30 

Costs for hand/wrist corrected 

Table 32 Costs for secondary prevention care following hip fracture corrected 

Table 35 Costs for false negative hip fractures corrected 

Tables 37, 
39 

Costs for RBFracture corrected [redacted] 

Tables 42 
– 48 

Outputs of model updated following amends as described above 
[some redacted] 

8.5 Updated text in response to consultee comment  

Appendix 
D 

New scenario added to investigate impact of set-up costs. 
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Executive Summary 

Background and objectives 

Plain film radiography or X-ray is the most common medical imaging approach used to detect 

fractures in urgent care settings, including the emergency department (ED), urgent treatment 

centre (UTC), and minor injuries units (MIU). X-rays are typically read in urgent care settings by 

healthcare professionals who are not radiology specialists or are inexperienced at interpreting 

X-rays, which may increase the likelihood of errors in decision-making, particularly in busy 

healthcare centres when staff are under significant pressure. Reduced staff numbers, such as 

outside normal working hours, may also influence the risk of errors in diagnosis. A definitive 

diagnosis of the injury will be produced by a consultant radiologist or reporting radiographer, 

although there may be a delay before this is available, meaning that this may arrive after people 

have been treated and/or discharged from urgent care. Delays vary across settings, and may be 

longer for children due to availability of specialist in paediatrics.  

Artificial intelligence (AI) algorithms have been developed to support clinicians in diagnosing 

fractures, with the intention to improve the diagnostic accuracy of clinicians reviewing X-rays. 

Improving diagnostic accuracy means reducing the number of missed fractures (false negative 

diagnoses) and the number of people treated for a fracture who don’t have one (false positive 

diagnoses).  

The purpose of this rapid early value assessment (EVA) was to identify the existing evidence 

base for the technology and to assess whether there was a prima facie case for the technology 

to represent a value for money investment for people in the NHS. A rapid evidence review was 

conducted followed by ‘light touch’ early economic modelling to explore whether a plausible 

case could be made for cost-effectiveness at the prices charged by the companies. The 

approach was not suitable for a definitive assessment of the cost-effectiveness of one AI-

algorithm against another, but rather to inform whether or not the NHS should consider adopting 

the technology whilst further evidence is collected.  

Evidence review – clinical and service use outcomes 

A broad evidence review was conducted to identify the existing evidence base for clinical, and 

service outcomes associated with the technology. The review identified 16 studies that 

evaluated the diagnostic accuracy of the technology as an aid to diagnosing fractures (i.e. when 
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used to assist reading clinicians, and not as a standalone diagnostic tool). Evidence was 

available for four of the eligible technologies: BoneView, Rayvolve, RBFracture, and TechCare 

Alert. None of the included studies were conducted in the UK and all were associated with 

limitations, including risks of bias and uncertain generalisability to the NHS. Few studies 

evaluated the technologies when used by clinicians who would typically provide the initial 

diagnosis in urgent care settings, with most evaluating readers who were clinicians specialising 

in radiology or amongst a varied of group of clinicians with varying levels of reading experience. 

Data were reported for a general sample of people with types of fractures that were eligible for 

consideration by the technologies. Subgroup data were also available for pre-specified fracture 

subgroups, for children and for ‘less obvious’ fractures. None of the included studies reported 

clinical outcomes associated with use of the technology and, aside from the reading time per 

scan, no service outcomes were reported. As compared to the list of outcomes specified in the 

NICE scope for this assessment, there was a major gap in the evidence base.  

There was unexplained heterogeneity in the results reported across studies. To aid with 

interpretation of the results, where multiple results were reported by studies according to staff 

experience, the EAG grouped the data according to reader experience (as described by the 

included publications). This approach was considered imperfect and did not completely resolve 

the heterogeneity in the data. The EAG conducted a feasibility assessment to determine if meta-

analysis of the data was possible, but where sufficient numbers of studies were available, these 

were considered too heterogeneous to pool. Notably, clinical advice to the EAG was that the 

diagnostic accuracy of unassisted readings in the included studies appeared lower than was 

expected by the EAG’s clinical advisors, which adds uncertainty to the generalisability of the 

evidence base.  

Overall, given the limitations in the evidence base and the heterogeneity in the study results, the 

EAG did not consider that the evidence base was suitable to determine reliable estimates of the 

diagnostic accuracy of the technologies for assisting in the diagnosis of fractures. However, 

based on evaluation of the evidence base as a whole and specifically in studies reporting 

outcomes for clinicians based in emergency care settings, the EAG identified a general trend for 

the technology to result in an improvement in sensitivity (i.e. a reduction in missed fractures) 

with no or minimal improvement in specificity (i.e. no change in false positive diagnoses). Use of 

the technology was still associated with varying levels of missed fractures, however, particularly 

in ‘less obvious’ fractures, where the technology was considered to be of most potential value. 

Further evidence is needed to determine robust evidence for any improvement in sensitivity, 
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and to establish whether the additional fractures identified would result in meaningful clinical 

benefits for patients.  

Economic evidence and analysis 

The evidence review identified no available economic evaluations for the technologies. The 

EAG constructed a simple decision model to establish whether there was a prima facie case for 

AI-assisted diagnosis to represent a value for money investment for NHS patients. As the long-

term costs and outcomes for different fractures were substantially different, the EAG divided the 

analysis into three decision problems, concerning ankle and foot, wrist and hand, and hip 

fractures. These were chosen on the basis of availability of data and their different downstream 

costs and consequences. An overall estimate of the costs and consequences for a typical 

urgent care setting was estimated based on case mix for the three fracture types, with extension 

to all fractures considered in scenario analysis. 

The decision model was a decision tree incorporating prevalence, sensitivity, specificity and 

cost per scan for each of the five diagnostic strategies (four AI algorithms and unassisted 

diagnosis). Estimates of the long-term costs and QALYs accrued from a true and false positive 

and negative for each fracture type were extracted from the literature. The tree was rolled back 

to estimate the expected cost and QALYs accrued from each diagnostic strategy. Scenario 

analyses explored key uncertainties. 

Overall, most of the AI-assisted algorithms were associated with a positive incremental net 

health benefit at willingness to pay thresholds of £20,000 and £30,000 per QALY gained. Due to 

data limitations, the EAG did not consider the analysis appropriate to compare technologies 

against each other, although this would be required in a more thorough analysis in future to 

ensure that the diagnostic accuracy of each algorithm was matched to its price. 

The results were mostly robust to the scenario analyses considered with the exception of 

diagnostic accuracy, where none of the algorithms were associated with a positive incremental 

net health benefit (compared with unassisted diagnosis) in the pessimistic scenario. 

Key points for decision makers 

• While a reasonable number of studies have evaluated the diagnostic accuracy of the 

technology as an aid to the identification of fractures, very few studies are specific to 

emergency care settings and all were associated with significant limitations due to risk of 
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bias or uncertain generalisability. The existing evidence base was not sufficient to 

determine an approximate estimate of the diagnostic accuracy of the technology for its 

intended use. 

• Across the evidence base as a whole, there was a trend for the technology to reduce 

missed fractures without any change to false positive diagnoses. However, based on the 

existing evidence, the EAG was unclear whether the additional fractures identified would 

translate into meaningful benefits for patients. While there are some fractures that, if 

missed, can result in significant harm to patients, stakeholders to this assessment also 

considered it plausible that the technology would improve diagnosis of more subtle 

fractures that may not require a change in management. 

• The evidence suggested that use of the technology would not eradicate the risk of 

missed fractures, meaning it was likely that health services would need to continue to 

take precautions to avoid the risk of a missed fracture in clinical practice (e.g. 

precautionary treatment of high risk suspected fractures). This means that use of the 

technology had an unclear impact on healthcare resource use. 

• On average, based on a simple decision model for this EVA, most of the AI algorithms 

considered represent a positive incremental net health benefit compared with unassisted 

diagnosis at NICE’s conventional threshold of £20,000 to £30,000 per QALY.  The 

evidence base was not sufficient to compare different algorithms against one another. 

• Results were mostly robust to scenario analyses with the exception of diagnostic 

accuracy. 
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Plain Language Summary 

X-rays are the usual method for diagnosing broken bones (fractures) in urgent care settings, 

including Accident and Emergency (A&E), urgent treatment centres (UTC), and minor injuries 

units (MIU). Artificial Intelligence (AI) technologies have been developed to assist in identifying 

fractures on X-rays, and PenTAG was commissioned to conduct an Early Value Assessment 

(EVA) to provide an initial view about whether licensed AI technologies could be used for 

fracture detection in urgent care while further evidence is developed.  

A search was conducted to identify all of the evidence that had evaluated AI to assist in fracture 

detection, including published evidence and confidential data from AI companies. The review 

identified 16 studies that evaluated how accurate AI was when used to assist diagnosis and 5 

studies that reported how AI changed the time needed to interpret an X-ray. None of the studies 

were based within the UK and most were conducted with staff different to those who would 

normally read X-rays in the NHS. This meant that it was not possible to identify a good estimate 

for how accurate AI would be if it was used in urgent care. Overall, there appeared to be early 

signs that AI could help to reduce missed fractures, but further research would be needed to 

confirm this. No studies were identified that evaluated how using AI affected outcomes for 

people with a suspected fracture (such as their health and mobility) or how using the AI affected 

time and costs for the health service (such as the number of repeat appointments needed).  

To assess whether AI would be good value for money for the NHS, we developed an economic 

model that combined information on how well AI diagnoses fractures, the cost of using AI, and 

information on what happens to a patient once their fracture is correctly – and incorrectly – 

diagnosed (their quality of life and costs to the NHS). Overall, our findings were that most of the 

AI technologies appeared to be fairly priced for the estimated benefits. We explored 

uncertainties related to the data and assumptions in our analysis and found that our conclusions 

did not change most of the time.  
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1. DECISION PROBLEM 

The decision problem for this assessment is described in the NICE scope and EAG comments 

and planned assessment methods are included in the protocol. 

During its assessment, the EAG made the following minor adjustments to the planned methods 

outlined in the protocol. These were: 

Definition of frailty: None of the included clinical effectiveness evidence reported the 

proportion of participants who were assessed as being frail, had experienced a frailty fracture, 

or reported outcomes specific to this group. Though one of the included economic studies 

(Beaupre 2020) stated that frailty was considered and assessed bone mineral density (BMD) for 

elderly people when needed, it did not define “frailty” and indicated that only age was used to 

classify fragility fractures.  

To help characterise the prevalence of people with frailty who were included in the evidence, the 

EAG reported other metrics that were imperfect but approximate indicators of frailty in the 

sample, where reported. This included the proportion of participants aged ≥80 years and the 

proportion of injuries due to falls. These indicators were considered to be imperfect, however. 

Reference standard: The EAG included evidence from studies that used a reference standard 

that did not match that described in the NICE scope and review protocol (i.e. definitive report 

from a consultant radiologist or reporting radiographer). These decisions were taken due to a 

paucity of high-quality evidence directly relevant to the decision problem and due to uncertainty 

surrounding the correspondence between staff grades in other healthcare systems compared to 

consultant radiologists and reporting radiographers in the NHS. Where reference standards 

were considered to be indirect or flawed in some way, this is highlighted in the report. 

Screening and prioritisation of evidence: The review protocol specified that the EAG would 

prioritise the clinical and economic evidence and outcomes that best addressed the decision 

problem for this assessment. As there were numerous quality considerations across the 

available evidence, it was not possible for the EAG to select a group of robust studies for priority 

inclusion in the review. Accordingly, the EAG included all of the evidence identified that reported 

diagnostic accuracy data for the included technologies, despite its limitations. As discussed later 

in the report, the limitations with the evidence means that the EAG did not aim to determine the 

diagnostic accuracy of the technologies, but rather to provide an overview of the existing 
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evidence base, initial interpretations from the results from patterns across the data, and 

recommendations for future research. One study1 was de-prioritised following identification as it 

did not report any of the priority outcomes in the protocol. This study assessed healthcare 

professional user acceptability of AI for the detection of fractures before and following its 

implementation in a healthcare setting.  

Selection of clinical evidence to inform the economic model: While all studies were 

associated with key limitations in quality, the EAG sought to select estimates of prevalence, 

sensitvity and specificity that could be used to inform the economic analysis. The studies with 

the most robust data – relative to the evidence base as a whole – were selected, though these 

were nevertheless considered to be unreliable. Studies with the following design features were 

prioritised for selection of sensitivity and specificity: studies with larger sample sizes; studies 

reported in peer-reviewed publications; studies that reported results for both AI assisted and 

unassisted clinicians; and studies that used a reference standard that did not include the results 

of the AI. Prevalence data selected for use in the economic analysis was derived from studies 

with: robust sample selection processes; larger samples; and relevant eligibility criteria. As this 

was an Early Value Assessment, these studies were not subjected to a formal quality appraisal, 

however key limitations of included studies are discussed within the report. 

Information sought from companies. The EAG submitted clarification questions to four of the 

relevant companies (Gleamer, Radiobotics, AZmed, Milvue) on 29th July and companies were 

asked to return their responses by 7th August. An additional round of questions was submitted to 

one company (Radiobotics) on 5th August. These dates were later than scheduled in the 

protocol to coincide with the completion of evidence selection, at which point the questions 

could address uncertainties across the identified evidence base.  
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2. TECHNOLOGIES 

A brief overview of the technologies included in the assessment can be found in Table 1. Please 

see the NICE scope for further details. 

Table 1: Description of technologies included in the assessment 

Technology (company) Key Features  

BoneView (Gleamer)) •  BoneView detects fractures in X-rays of the appendicular skeleton, 

ribs and thoracic-lumbar spine. Also dislocations, effusions and 

bone lesions. 

•  Exclusions: skull, cervical spine (IFU) 

•  Suitable for people aged 2 years and over. 

•  Compatible with all available X-ray imaging systems. 

•  Uses X-ray radiographs in DICOM format. 

• Results are presented as either positive for fracture, negative, or 

doubt (IFU), with bounding boxes placed around identified 

anomalies. Where there is doubt about the presence of an anomaly, 

the bounding box is dashed. No response is given where an 

excluded body area is analysed (IFU). 

Rayvolve (AZMed) •  Rayvolve detects fractures in the appendicular skeleton and ribs. 

Also dislocations and joint effusions. 

•  Suitable for adults only. 

•  Uses X-ray radiographs in DICOM format. 

•  Integrated into hospitals’ existing radiology workflows using 

Wellbeing’s AI Connect gateway. 

RBFracture (Radiobotics) • RBFracture detects fractures in the appendicular skeleton, knee, 

elbow, rib and periprosthetic area 

• Exclusions: skull, face, spine (IFU), chronic and healed fractures 

(RFI) 

• Suitable for people aged 2 years and over (RFI) 

• Compatible with all available X-ray imaging systems 

• Uses X-rays in DICOM format 

• A red dot is placed on summary reports to indicate an identified 

anomaly. Bounding boxes are placed around identified anomalies; 

lower confidence results are indicated using a dashed line provided 

• Most recent version at time of assessment: 2.1. XXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXX). 

qMSK (Qure.ai) •  qMSK detects fractures in the appendicular skeleton and ribs. 

• Suitable for adults only. 
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Technology (company) Key Features  

TechCare Alert (Milvue) •  Detects fractures in X-rays of the appendicular skeleton and the ribs. 

Also dislocations. 

•  No age limit for use. 

•  Uses X-rays in DICOM format. 

•  Boundary boxes are placed around areas of interest. 

Abbreviations: DICOM, Digital Imaging and Communications in Medicine; IFU, instructions for use; RFI, request for 
information 

Source: all information is reproduced from the NICE scope for this assessment unless stated otherwise. 
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3. CLINICAL CONTEXT 

3.1. Care pathway 

The care pathway for fractures within emergency settings in the NHS is described in the NICE 

scope for this assessment. As part of its assessment, the EAG noted the following additional 

considerations regarding the care pathway for fractures that was relevant to interpreting the 

evidence and understanding the potential role of AI as an aid to detecting fractures: 

• The scope for this assessment was to consider the clinical and cost effectiveness of AI 

technologies as a diagnostic aid for detecting fractures in emergency settings, including the 

emergency department (ED), urgent treatment centre (UTC), and minor injuries units (MIU). 

These settings differ in the care pathways available to people with suspected fractures, for 

example in the grade of staff who are available to read radiographs and options for further 

imaging modalities. There may also be differences in the populations who are admitted to 

each of these settings, for example MIUs rarely assess people with suspected hip fractures, 

who in general would be referred to an ED, depending on local policy. In general, MIUs will 

generally receive a higher case mix of people with suspected fractures of the extremities. 

Variation in the care pathway and the populations treated within each setting will have 

implications for the potential value of using AI as a decision aid, as the value of AI is likely to 

vary according to the staff members using the technology, the fractures assessed, and the 

downstream impacts of AI on other parts of the care pathway. In order to interpret the 

evidence for AI as a decision aid presented in this report, it will be important to ensure that 

the evidence most relevant to the target setting is used and any variation between the 

evidence base and the target setting is considered carefully.   

• Clinical experts noted that the care pathway for the assessment and treatment of fractures 

varies across the UK as each healthcare service develops and follows its own protocols. 

While there are established guidelines and standards that guide clinical practice, it is 

common for services to adapt the care pathway to adjust to the staff and resources they 

have. This means that there are variations in the staff who provide the initial assessment of 

x-rays, the use of additional imaging modalities, and the length of time until a definitive 

report is available. As with the importance of the target setting for the technology, the EAG 

also noted that the generalisability of the evidence for AI in this report to each healthcare 

service will vary according to local protocols for assessment and management. In addition to 

the issues discussed in the NICE scope, the EAG also highlight the following considerations: 
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o While NICE recommends2 that a radiologist, radiographer or other trained reporter 

should provide a definitive report of an X-ray prior to discharge, the EAG was 

advised that this was very rarely possible and the typical time to a definitive report 

was between 24 hours and 2 weeks across different services. This is much longer 

than targets set by NHS England who have suggested, in consultation with The 

Royal College of Radiologists and The Society of Radiographers3, a 12-hour target 

to a definitive report of X-rays for outpatients in emergency settings, with the aim that 

this should be reduced to a 4-hours. This will be very difficult to achieve without 

major changes to the service.  

o The EAG received advice that services also vary in their approach to producing 

definitive reports, with some centres processing these on a first come, first served 

basis, while other centres may use alternative strategies, such as only providing a 

definitive report of X-rays where the initial assessment was negative (i.e. to confirm 

that a fracture had not been missed).  

o A definitive report from a consultant radiologist or reporting radiographer may not 

always be necessary depending on the reader of the initial X-ray; for example, a 

consultant hip surgeon may make the initial diagnosis without the need for a further 

report. 

o The EAG was aware that centres may take precautions to reduce the risk of missed 

fractures, particularly for those fractures that are known to be challenging to detect 

on X-ray. For example, suspected scaphoid fractures and intra-articular fractures 

may have long-term consequences for a person’s health and mobility if missed, and 

so the injury may still be treated as a fracture and re-assessed in two weeks. A risk-

averse approach may also be taken with more vulnerable patients for whom the 

potential consequences of a missed fracture would be considered to be greatest 

(e.g. children, people identified as frail). Such precautionary tactics are associated 

with a reduced risk of missed fractures but an increased risk of over-treatment, 

including the need for additional assessments after 2-weeks. This means that the 

potential value of AI as a decision aid will vary according to whether centres use any 

precautionary tactics.  

• There are variations in the staff that would be involved in diagnosing fractures for people 

with suspected fractures that present to emergency settings out of hours (weekday evenings 

after 6pm, overnight, and weekends). During out of hours, some centres may outsource 

diagnosis of x-rays to centres overseas (i.e. where daytime staff are available due to the 
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time difference). Clinical experts suggested outsourcing diagnosis may not necessarily be 

as accurate, though the EAG did not have any data to confirm this. There may also be 

variations in the types of fractures seen in emergency settings during out of hours, due to 

variation in the cause of injuries; for example, sports injuries are more prevalent at 

weekends, while alcohol induced injuries (falls and injuries due to violence) may be more 

prevalent overnight. The EAG therefore considered it plausible that the potential value of AI 

as a diagnostic aid may vary according to whether people with suspected injuries were 

presenting to emergency settings during out of hours services or during weekdays. 

• The EAG considered it plausible that the introduction of AI as a decision aid within the NHS 

may lead to broader changes to the care pathway, which may vary across centres and be 

challenging to predict. For example, centres that use AI may alter the staff that are required 

to provide the initial assessment, may change their practices for ordering and timing the 

definitive report, and may alter their use of precautionary tactics. Further consideration of 

issues related to the introduction of AI within a healthcare setting as discussed in Section 

3.2. 

3.2. Considerations for implementing AI as a diagnostic aid in clinical 

practice 

• As discussed in the review protocol, the EAG received advice that AI would likely be 

valuable for use as a decision aid in a select group of fractures only, such as those that are 

challenging to diagnose on X-ray during the initial review and where the consequences for a 

missed fracture are greatest. However, the EAG was uncertain to what extent the 

technologies could be targeted towards specific fracture sites only or whether, once 

implemented, the technology would provide an analysis of all X-rays that are entered into 

the radiology picture archiving and communication systems (PACS). Information provided by 

the companies involved in this assessment was that services are charged on a fee for scan 

basis, with some offering volume-based discounts, meaning that the cost of the technology 

would vary considerably according to whether the technology is used for some or all 

suspected fractures. If a service chose to target the technology towards specific fracture 

types and locations, the EAG was uncertain how feasible this would be to implement in 

practice, for example whether the technology could be specified to not produce an analysis 

of certain body locations (as is the case for body locations not covered by the technology) or 

whether the treating clinician would need to choose to activate the technology for every 

exam. Expert advice to the EAG was that either approach could be feasible, with the 
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selective use of the technology ensuring that the technology was only used in the minority of 

circumstances where additional review was beneficial. Cost implications for the technology 

will vary according to the way in which the technology is implemented. 

• The EAG considered that the successful integration of the technology with Radiology picture 

archiving and communication systems (PACS), and the perceived ease and acceptability of 

this, would be important for considering the potential value of the technology. This may 

include consideration of the effort required to produce a result, the notifications used, and 

the presentation of the findings. The EAG also considered that, were the technology used, in 

future it may be required to sit alongside other AI technologies analysing the same images 

for other anomalies. The EAG was uncertain to what extent the technologies already have 

this functionality but were aware that other technologies for analysing X-rays for other 

abnormalities are available.4 

• The EAG considered it plausible that the successful integration of the technology and the 

extent to which staff have confidence in it may influence the way it’s used in clinical practice 

and, therefore, its potential value for the service. For example, where there are 

discrepancies in the result given by the technology and clinical judgement, staff confidence 

in the technology may determine which result they choose to prioritise in the final decision. 

The EAG received advice from clinical experts that confidence in the technology may vary 

according to staff grade, in that more junior staff may be more likely to place greater weight 

on the result from the AI. The EAG was also advised that over-confidence in the AI could 

have negative consequences; for example, staff may rely on the AI diagnosis during busy 

periods.  

• Clinical advice to the EAG was that the optimum order of use would be for the reader to 

form a judgement about the X-ray without use of the technology, and only then consult the 

results provided by the technology. This was partly to avoid over-reliance on the technology, 

with another benefit being to reduce the risk that readers become less skilled in reading X-

rays over time, with potential knock-on consequences (for example, were the technology to 

not be available in the future). Were the technology to be used in this order, this would 

increase the reporting time required for X-rays, with potential knock-on consequences for 

the service.  

• The algorithm within AI technologies used for detecting fractures specifies the threshold at 

which an identified anomaly is defined as a fracture or not, i.e. the level of confidence 

required for the technology to return a positive result. Depending on the threshold used, this 

may favour sensitivity or specificity of the technology, according to whether the threshold is 
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selected to prioritise to avoid missed fractures or false positives. The EAG noted the 

following considerations on this topic: 

o Generally speaking, the preferred threshold may vary according to the fracture being 

assessed or the needs of the patient. For example, a lower confidence threshold 

may be chosen for scaphoid fractures when there are significant consequences to 

the patient of a missed fracture. The EAG was uncertain whether it was possible for 

the operator to adjust the threshold used by the technology according to the fracture 

being assessed or whether this changed manually. Based on the information 

received, the EAG considered it more plausible that the same threshold was used for 

all fractures. As a consequence, the EAG considered it important that instructions 

and training for operators encourages the use of clinical judgement to interpret binary 

responses from technologies. 

o Some technologies, particularly more recent versions, include a note about the 

confidence of the result, such as by using a boundary box around the identified 

anomaly. The EAG considered that confidence metrics may be interpreted differently 

across users, although this was something that it was not possible to evaluate within 

this EVA. 

o There is no clear label or metric to identify the threshold used by the technologies 

during the published evaluations (for example, there is no apparent scale from which 

to report the threshold used and compare this across studies and different 

technologies). This makes it difficult to evaluate the performance of different 

thresholds, and it was also not clear to the EAG when studies of the same 

technology were using the same or different thresholds. As the sensitivity and 

specificity of the technology for detecting fractures will vary according to the 

threshold used, this creates significant uncertainty in the generalisability of the 

evidence base to clinical practice. 

• AI technologies may be updated over time to refine and improve the technology. These 

iterative updates may lead to dynamic changes to the cost effectiveness of the technology 

and it was not clear to what extent NICE or local services could monitor this. Expert advice 

to the EAG was that frequent updates to the technology may be challenging for UK bodies 

to appraise, and it may be that an approved AI technology would not be expected to 

undergo update except to correct any defects or safety considerations. 
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• The EAG was unclear about any legal or ethical implications around using the technology 

within the NHS. For example, how the introduction of the technology would affect liability 

considerations for missed fractures discussed in the NICE scope.  

3.3. Equality issues 

Equality considerations for this assessment were noted in the NICE Scope. Further to these, the 

EAG identified a paucity of evidence for particularly populations who may be more vulnerable to 

missed fractures and over-treatment, including people with frailty and those with health 

conditions that affect their bone health and long-term recovery. 
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4. CLINICAL, SERVICE AND TECHNOLOGICAL EVIDENCE SELECTION 

4.1. Evidence search strategies and study selection 

The search strategies are presented in Appendix A and PRISMA diagram for the evidence 

selection is presented in Appendix B. 

Searches were carried out in late June and early July 2024. The search strategies used relevant 

search terms for artificial intelligence, X-ray and different fracture types; each of these subjects 

comprised a combination of indexed keywords (e.g., Medical Subject Headings, MeSH) and 

free-text terms appearing in the titles and/or abstracts of database records. Searches were 

translated and adapted according to the configuration of each database. No date, language or 

publication status (published, unpublished, in-press, and in-progress) limits were applied. 

Searches for clinical and service outcomes and cost-effectiveness were combined and carried 

out in one search strategy. 

Following deduplication, a total of 1,341 records of potentially relevant evidence on clinical 

and/or cost effectiveness were retrieved. Databases searched were Medline (including Medline 

in Process), Embase, Cochrane, Web of Science, CEA Registry and HERC. Additional trial 

registries searched were Clinicaltrials.gov (NLM) and ICTRP (WHO). The websites of the 

individual companies were searched; NICE and SIGN websites were searched for related 

guidelines; MAUDE and MHRA were searched for adverse events data. In addition, we scanned 

the reference lists for the Kuo 20225 and Pauling 20246 systematic reviews. 

During study screening, the EAG identified several studies where the technology evaluated was 

unclear or where it was unclear whether the technology was evaluated as a standalone 

technology or with the interpretation of a clinician. In these cases, the EAG sought advice from 

three of the companies included in this assessment (Gleamer, Milvue, and AZmed) where they 

were stated to have sponsored the study and/or where staff from their companies were listed as 

authors. The EAG did not receive a response from Milvue or AZmed during its assessment, and 

therefore the studies queried were not included in the review. Following a response from 

Gleamer, one study was included in the assessment and two studies were excluded. Additional 

queries about included studies were also sent to companies (see Section 7) for details, which 

resulted in the merging of two studies: Radiobotics 20217 and Bonde [unpublished]. The former 

of these was a published document with little reported data (though following a request from the 

EAG the company, Radiobotics, provided additional data) and the latter was a full manuscript in 
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preparation that reported data for a subgroup of participants in one of the included countries. A 

full list of exclusions is provided in Appendix C. 

4.2. Included and excluded studies 

A total of 1,343 titles and abstracts were screened, 209 full-text publications were reviewed, and 

16 studies (17 documents) met the review inclusion criteria. The included studies are 

summarised in Table 2. 

One study included in the review (Bousson 20238) conducted a head-to-head comparison of 

assisted reading using three technologies: BoneView, Rayvolve and TechCare Alert (please 

note that the study referred to TechCare Alert as ‘SmartUrgences’, which is an umbrella name 

for AI technologies developed by the same manufacturer. For pragmatic purposes, the EAG 

assumed that these were the same technology). The majority of other studies included in the 

review evaluated readings assisted with either BoneView or RBFracture.  

A breakdown of the number of studies evaluating each technology is as follows: 

• BoneView: nine studies, including two non-comparative studies where BoneView assisted 

readings were assessed against the reference standard (Cohen 20239, Meetschen 202410), 

one head-to-head comparison (Bousson 20238) and five studies that assessed both 

BoneView-assisted and unassisted readings (Canoni-Meynet 202211, Dell-Aria 202412, 

Duron 202113, Guermazi 202214, Nguyen 202215, Oppenheimer 202316) 

• RBFracture: five comparative studies (Bachmann 202417, Jørgensen 202318, Radiobotics 

20217 (also Bonde), Ruitenbeek 202419, Yogendra [unpublished]20) 

• Rayvolve: one comparative study (Fu 202421) and one head-to-head comparison (Bousson 

20238) 

• TechCare Alert: one comparative study (Suite 202022) and one head-to-head comparison 

(Bousson 202323)  

• qMSK: zero studies 
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Table 2: Overview of included studies with clinical and technological evidence 

First author (date), 
location, publication 
type 

Index test and 
comparators 

Reference Standard Participants, images, age 
range, included and excluded 
fractures 

Type of 
outcome 
reported 

EAG Notes 

Head-to-head comparison     

Bousson (2023)23, 
France, published article 

BoneView/ 

Rayvolve/ 

TechCare Alert  

Consensus between 4 
radiologists (one senior) 

1210 adults and adolescents (15 
years or older), 1500 images, 
included clavicle, shoulder, 
humerus shaft, elbow, radius/ulna 
shaft, wrist/hand, finger, 
pelvis/hip, femur shaft, knee, 
tibia/fibula shaft, ankle, and foot 

DTA No unassisted results. 
The reference standard 
was based upon a 
combination of the AI 
output and clinician 
reports, therefore DTA 
results were considered 
to be at high risk of bias 

BoneView      

Cohen (2023)9, France, 
published article 

BoneView assisted (no 
comparator) 

Consensus between 3 
radiologists with access 
to clinical information 
and additional imaging 
where available. 

637 adults, 1917 images, 
included wrist only 

DTA Wrist fractures only.  

Canoni-Meynet (2022)11, 
France, published article 

BoneView assisted vs 
unassisted 

Consensus between 3 
radiologists and AI, or 2 
senior radiologists and 
AI 

500 adults and children, 500 
images, included skeletal, 
excluded skull and facial  

DTA, 
service  

The reference standard 
was based upon a 
combination of the 
unassisted readings and 
the AI output, therefore 
DTA results were 
considered to be at risk 
of bias  

Dell-Aria (2024)24, 
Belgium, published 
article 

BoneView assisted vs 
unassisted 

Decision by one 
radiologist (in 
consultation with an 
orthopaedic surgeon) 
who had access to all 
medical information and 
could examine the 
patient if necessary. CT 
sought where required. 

101 adults (>/=18 years), included 
upper and lower limbs including 
shoulder and hip, excluded other 
locations 

DTA Low-velocity trauma 
injuries to upper and 
lower limbs only 
(included shoulder and 
hip) 
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First author (date), 
location, publication 
type 

Index test and 
comparators 

Reference Standard Participants, images, age 
range, included and excluded 
fractures 

Type of 
outcome 
reported 

EAG Notes 

Duron (2021)13, France, 
published article 

BoneView assisted vs 
unassisted 

Consensus between 2 
radiologists 
(disagreements resolved 
by another radiologist) 

600 adults, 600 images, included 
shoulder, arm, hand, pelvis, leg, 
foot 

DTA, 
service  

Excluded obvious 
fractures from the 
sample.  

Guermazi (2022)14, USA, 
published article 

BoneView assisted vs 
unassisted 

Consensus between 2 
radiologists without 
clinical information 

480 participants, age NR but 
appear to be only or mainly 
adults. Appendicular skeleton with 
equal number of obvious and 
non-obvious fractures. 

DTA, 
service 

 

Meetschen (2024)10, 
Germany, published 
article 

BoneView assisted (no 
comparator) 

Consensus between 2 
consultant radiologists 
with access to additional 
imaging where required. 

200 adults and children, 200 
images, included hand, wrist, 
arm, elbow, shoulder, scapula, 
clavicle, ribs, spine, pelvis, hip 
joints, legs, knees, ankles, and 
feet 

DTA, 
service  

 

Nguyen (2022)25, 
USA/France, published 
article 

BoneView assisted vs 
unassisted 

Consensus between 2 
radiologists 
(disagreements resolved 
by another radiologist) 

300 children and young adults (2 
to 21 years old), 300 images, 
included appendicuar skeleton, 
excluded skull, pelvis, rib cage, 
spine 

DTA Children and young 
people only.  

Oppenheimer (2023)16, 
Germany, published 
article 

BoneView assisted vs 
unassisted 

Decision by one 
radiologist with access to 
the preliminary reports. 
CT, MRI, or PET were 
used as the reference 
standard when 
eprfrmend within 1 week 
of intiial X-ray and no 
new trauma or 
symptoms. 

735 children and adults (range 2 - 
100 years), 1163 images, 
included skeletal, excluded 
cervical spine, skull, face 

DTA It was unclear whether 
the reference standard 
included consideration of 
the AI results, therefore 
DTA results were 
considered to be at risk 
of bias 

Rayvolve      

Fu (2024)21, USA, 
published article 

Rayvolve assisted vs 
unassisted 

Consensus between at 
least 2 of 3 radiologists 

Adults (>=22 years), sample size 
NR but 186 exams. Fractures 
included ankle, clavicle, elbow, 
forearm, humerus, hip, knee, 
pelvis, shoulder, tibia/fibula, wrist, 
hand, foot 

DTA, 
service  

 

RBFracture      
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First author (date), 
location, publication 
type 

Index test and 
comparators 

Reference Standard Participants, images, age 
range, included and excluded 
fractures 

Type of 
outcome 
reported 

EAG Notes 

Bachmann (2024)17, 
US/Denmark, published 
article 

RBFracture assisted vs 
unassisted 

Consensus between 2 
consultant radiologists 
(disagreements resolved 
by another consultant 
radiologist) with access o 
clinical information and 
original radiology 
reports. 

340 adults (>=21 years) and 
children (>=2years), 340 images, 
included appendicular skeleton, 
excluded other locations (e.g. 
ribs, spine) 

DTA, 
service  

 

Radiobotics (2021)7, 
USA/Denmark, 
document. Bonde, 
unpublished 
manuscript26, 
****************************
*************************** 

RBFracture assisted vs 
unassisted 

Consensus between 2 
radiologists 
(disagreements resolved 
by a reporting 
radiographer) 

312 adults (>/=21 years), 312 
images, included unobvious hip, 
excluded all other locations and 
obvious hip 

DTA  Non-obvious suspected 
hip fractures only. 

Jørgensen (2023)18, 
Denmark, abstract 

RBFracture assisted vs 
unassisted 

Radiology report was 
used, including 
information about 
subsequent imaging 
where ordered. 

214 adults, 214 images, included 
hip 

DTA Hip fractures only 

****************************
***************** 

****************************
***** 

****************************
****************************
****************************
****************************
****************************
******** 

**************************************
**************************************
**************************************
**************************************
***** 

***********
* 

*****************************
*****************************
*****************************
*****************************
*****************************
*****************************
*************************DT
A results were therefore 
considered to be at risk 
of bias 

*****************************
**************************** 

****************************
***** 

****************************
****************************
****************************
****************************
****************************
****************************
********************** 

**************************************
**************************************
**************************************
**************************************
**************************************
*********************** 

*** 
 

TechCare Alert      
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First author (date), 
location, publication 
type 

Index test and 
comparators 

Reference Standard Participants, images, age 
range, included and excluded 
fractures 

Type of 
outcome 
reported 

EAG Notes 

Suite (2020)22, France, 
document 

TechCare assisted vs 
unassisted 

The original radiology 
report produced by a 
radiologist was used. 

650 adults (>/=18 years), included 
lower limbs (pelvis, ankle, knee, 
hip, leg, foot), upper limbs (arm, 
elbow, shoulder, hand, wrist), 
thorax (ribs), excluded other 
locations 

DTA 
 

Abbreviations: CT, computed tomography; DTA, diagnostic test accuracy; MRI, magnetic resonance imaging; NR, not reported; PET, positron emission 
tomography 
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4.2.1. Study design and diagnostic tests 

Details about the methodological approach used by the included studies are provided in Table 

3. 

Six studies9 11 16 23 24 27  included consecutive cases presenting to participating centres during the 

study period and one study21 included a random selection of cases from a database of patients 

who presented with a suspected fracture. The remaining nine studies7 10 13 14 17 18 20 22 25 used a 

case-control design to stratify inclusion towards a set fracture prevalence rate (typically 50%, 

with additional requirements, such as spread of specific fracture types and age groups). 

Consecutive and random sampling study designs are generally more robust for diagnostic 

evaluation, as the study samples more closely represent the prevalence of the target condition 

that would be seen in clinical practice, meaning that prevalence data and PPV and NPV 

outcomes (each affected by the prevalence rate) will be more reliable. However, as the 

diagnostic accuracy of X-ray varies according to the fracture location, even consecutive and 

random sampling designs may be limited if they do not include a mix of fracture types that is 

representative of clinical practice (meaning that sensitivity and specificity data may not be 

generalisable). This issue is discussed further in Section 4.2.1. 

The vast majority of studies used a retrospective study design, with only two studies 

(Oppenheimer 202316 and Dell-Aria 202424) using a prospective design. Retrospective designs 

are unlikely to be representative of clinical practice for several reasons, including that readers 

have knowledge that their judgement will not impact upon patient care, readers are less likely to 

have the same access to support from colleagues, and readers may not dedicate the same 

length of time and consideration to reading X-rays within these circumstances compared to 

clinical practice. 

None of the included studies were set in the UK, though the majority (12 studies) included sites 

in Europe, five studies included sites in USA, and one study was set in Asia (Singapore). Based 

on the information reported in the included studies, it was not clear to the EAG how applicable 

the study findings were to the decision problem for the assessment; i.e. the target emergency 

settings of ED, MIU and UTC, and the extent to which readers of index tests and the reference 

standard were comparable to staff in the target settings. This was a major limitation of the 

evidence base, since – as noted in the review protocol – the diagnostic accuracy of the index 

test and technologies would be expected to vary according to both case mix and reader 

experience. Eight of the included studies9-11 16 18 20 22-24 27 were described to be set within a 
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hospital and/or trauma centre. 

*******************************************************************************. However, the EAG was 

uncertain to what extent the care pathway and treating clinicians would vary between hospital 

settings in included studies as compared to the UK. Of the other studies, two studies13 21 were 

described as being set in medical settings and one study17 was described as being based within 

a virtual centre. Two studies14 25 were described as using data from unspecified settings with the 

USA.  

Many of the included studies reported multiple analyses for the diagnostic accuracy of assisted 

and unassisted readers according to different staff grades (in addition to other relevant 

subgroups, such as age group and fracture location). As it was not possible to determine which 

analyses were most relevant to NHS staff who would be expected to use the technology in 

clinical practice, the EAG instead sought to categorise available data according to the level of 

experience as described by the publications: less experienced staff; highly experienced staff, 

and mixed or unclear levels of experience. The EAG noted that these categorisations were 

based on highly limited information and there is a high risk of error. Further information about 

this is provided in Section 5.1. Very few studies included staff that appeared comparable to 

those who would typically work within urgent care settings in the NHS, such as emergency care 

doctors or specialist trauma nurses. 

Only three of the included studies specified the version of the technology under evaluation: in 

these studies, it was stated that Bousson 2023 evaluated BoneView version 1.0.2. and 

TechCareAlert version 1.7 (no version reported for Rayvolve), Radiobotics (2021) evaluated 

RBFracture version *** and Yogendra [unpublished] evaluated RBFracture version ***. 

Descriptions of the output of the evaluated technologies was typically poor across studies, and 

therefore the EAG did not feel confident in differentiating between studies on the basis of 

features mentioned or not mentioned in the publications. For example, two studies13 16 

evaluating BoneView reported that the technology provided readers with an indication of 

confidence in the result, either as a note on the result and/or as an altered boundary box around 

the area of interest. 

**********************************************************************************************************. 

However, the EAG considered it plausible that other studies included in the assessment also 

evaluated versions of the technology that provided a rating of confidence with results, and 

therefore did not use reporting of this feature to draw a comparison across studies. Similarly, 

three studies mentioned that staff received training in the AI prior to the study (Canoni-Meynet 
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2022, Bachmann 2024, Radiobotics 2021), with varying levels of training ranging from months 

(Canoni-Meynet 2022) to written instructions and five training cases only (Bachmann 2024). The 

EAG considered it plausible that all studies would have trained readers in using the technology 

prior to the study, and that training was simply not described for most studies. The EAG 

therefore did also not use training requirements as a factor for comparing findings. 

Where the same readers read the same exams assisted and unassisted, the washout period 

between assisted and unassisted readings ranged between no washout to three months (two 

studies 16 25had no washout, four studies11 14 17 21 had 1 month washout, 

********************************************, one study23 had 2 months washout, and one study24 had 

3-months washout). The EAG considered that a washout of 1-month or longer was sufficient to 

ensure that the reading clinicians did not recall their previous responses to an X-ray, or at least 

would do so in very few cases. The EAG considered that there was a risk of bias associated 

with no washout period, as readers may be guided by their previous responses using the 

alternative method. Where washout was not reported, the EAG considered it more likely that no 

washout period was used, though of course this was not clear. 

One of the studies used an index test that was considered not to be representative of the likely 

use of the technology: in this study to detect wrist fractures, rather than readers using the 

technology to reach a decision on diagnosis, the standalone results from the AI results and 

results of the original radiology report were artificially combined: an observation was considered 

positive when it was detected by either the AI or reported on IRR, regardless of the other’s 

group result. The EAG considered this study to be at a risk of bias. 

The reference standard used in the included studies generally included a decision from a senior 

radiologist, though there was some variation in the information that readers had to make their 

diagnosis (e.g. clinical information and medical notes, and access to further imaging). Where 

the reference standard was based on limited access to information about the patient and injury 

(as would be available within routine clinical practice), the EAG considered there to be an 

increased risk of incorrect judgements. Where a reference standard is determined to be 

imperfect, this affects the reliability of all the study results. The reference standard used in three 

studies (Canoni-Meynet 2022, Bousson 2023 and **********************) included the results of 

the AI technology, and in a further study it was unclear whether this was the case (Oppenheimer 

2023). The inclusion of these studies was a deviation from the review protocol (as described in 

Section 1) and was also associated with the potential for bias in the results, as it created closer 
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alignment between the results of the AI-assisted assessment and the reference standard. The 

EAG considered that the evidence from these studies should be interpreted with caution.  

On the basis of information about the study design used by the included studies, and as 

described in Section 1), the EAG identified studies that provided the best quality evidence 

available within the evidence base and therefore could be used to inform the economic analysis. 

These decisions were based upon the following post hoc criteria: having a reference standard 

that did not include the AI reports, inclusion of results for both AI assisted and unassisted 

readers, relatively large sample sizes and peer-reviewed publication. Based upon these key 

criteria, the EAG considered the pivotal studies for each technology, to be as follows: 

• BoneView: Duron 2021 (for adults) and Nguyen 2022 (for children and young adults).  

• RBFracture: Bachmann 2024 (adults and children).  

• Rayvolve: Two studies evaluated Rayvolve (Fu 2024 and Bousson 2023). Although limited 

by a relatively small sample size, Fu 2024 avoided the limitations noted above and was 

therefore considered by the EAG to be the pivotal study for this technology.  

• TechCare Alert: Two studies evaluated TechCare Alert (Suite 2020 and Bousson 2023), 

both of which were associated with limitations as described above. Suite 2020 was also not 

presented in a peer-reviewed publication. Evidence for this technology was therefore of 

poorer quality than the studies listed above. 

The EAG emphasises that all of these studies are associated with their own quality limitations 

that may undermine the reliability of the findings. In particular, none of the studies named above 

used a prospective design and may not be representative of clinical practice. Unfortunately, the 

two studies that included a prospective design were limited in other ways (see section 4.31.1.1) 

and were considered to be less reliable than those selected. Specifically, in Oppenheimer 

(2023), it was unclear whether the reference standard included the results of the technology, 

and Dell-Aria (2024) was a relatively small study.  

Participant selection was also a key consideration in the selection: studies where participants 

were selected to ensure sufficient numbers of fractures (i.e. case-control designs, where 50% of 

the sample were selected for the presence of a fracture) would not have a fracture prevalence 

rate representative of clinical practice (and may also be unlikely to have a representative 

fracture location mix). These studies were not used to determine fracture prevalence in 
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economic analysis, and PPV and NPV estimates were considered to be unreliable. The pivotal 

studies by Duron 2021, Nguyen 2022 and Bachmann 2024 used a case-control design, but due 

to methodological issues with the other studies for these technologies, these studies remained 

the most robust for estimating sensitivity and specificity (prevalence, PPV and NPV were not 

extracted or considered from these studies). One of the studies that evaluated TechCare Alert 

(Suite 2020) also used a case-control design, with the other being limited in other ways (see 

4.3). The relevant study sample from the pivotal Rayvolve study (Fu 2024) used random 

sampling. However, it is unclear, but appears likely, that the original dataset from which the 

sample were selected was based on  a case-control design.  

Important subgroups in the review were different staff grade/type and specific fracture locations 

(hand/wrist, foot/ankle, hip, elbow fractures in children and Salter-Harris fractures). The majority 

of studies provided some relevant subgroup data, with four BoneView studies (Canoni-Meynet 

2022, Meetschen 2024, Dell-Aria 2024, Guermazi 2022), three RBFracture studies (Radiobotics 

2021 (also Bonde), Bachmann 2023, Yogendra) and the Rayvolve and TechCare studies (Fu 

2024 and Suite 2020 respectively) all reporting some DTA data for different staff types or grades 

and five BoneView studies (Canoni-Meynet 2022, Duron 2021, Ngyuen 2022, Oppenheimer 

2023, Guermazi 2022) and the head-to-head study (Bousson 2023) reporting some DTA data 

for different fracture locations. Oppenheimer (2023) and Bachmann (2024) each reported 

subgroup data in children and young people.  
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Table 3: Study design of included studies 

First author 
(date), 
location, 
publication 
type 

Index test 
and 
comparators 

Design Order of tests 
and washout 

Index tests details Reference standard details Subgroup 
data 

Head-to-head comparison      

Bousson 
(2023), 
France, 
published 
article 

BoneView/ 

Rayvolve/ 

TechCare 
Alert  

Retrospective
, consecutive 
sampling 

Unassisted/assi
sted, ground 
truth 2 months 
later 

BoneView (version: v1.0.2; output:  
doubtful fractures were categorised 
as a fracture). Readers: six 
radiology residents (4 years of 
residency)  

Four musculoskeletal radiologists, 
three fellows  and one senior 
radiologist. Combination of 
radiology reports and AI results. 
Timing: 2 months later. N = 1500  

Fracture 
location 

BoneView       

Canoni-
Meynet 
(2022), 
France, 
published 
article 

BoneView 
assisted vs 
unassisted 

Retrospective
, consecutive 
sampling 

Unassisted, 1 
month washout, 
assisted, ground 
truth 

BoneView (version: NR; output: 
Bounding boxes overprinted on X-
rays). Reading clinicians: 3 
radiologists with >= four months 
daily practice with the AI system 
(Clinical readers were radiologists of 
varying seniority: 15 and 2 years of 
experience in MSK imaging, and a 
third-year resident). Process: NR 

Agreement between AI and 
radiologists’ decisions, Timing: 
NR. N = 500. Note: some 
decisions were based only on the 
two senior radiologists. 

Staff 
grade/type 

Fracture 
location 

Cohen (2023), 
France, 
published 
article 

BoneView 
standalone + 
radiology 
report vs. 
unassisted 

Retrospective
, consecutive 
sampling 

Unclear BoneView (version: NR; output: 
Binary as doubtful fractures were 
categorised as a fracture). Reading 
clinicians: Initial radiology reports 
(IRRs) were used to provided 
radiologist support to the AI. These 
IRRs were made by a total of 41 
radiologists with various levels of 
experience, including 29 residents 
(4th or 5th year of residency), eight 
fellows in radiology, and four 
attending radiologists.). Process: NR 

Consensus between three expert 
radiologists (5+ years of 
experience in MSK radiology) with 
access to additional imaging 
where available. Timing: NR. N = 
637.  

None 

Dell-Aria 
(2024), 
Belgium, 

BoneView 
assisted vs 
unassisted 

Prospective, 
consecutive 
sampling 

Ground truth, 
unassisted, 3 

BoneView (version: NR; output: 
Binary). Multiple suspected fractures 
in one location had one result. 

A radiologist with >15 years’ 
experience read the X-rays and 
had access to all the medical 

Staff 
grade/type 
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First author 
(date), 
location, 
publication 
type 

Index test 
and 
comparators 

Design Order of tests 
and washout 

Index tests details Reference standard details Subgroup 
data 

published 
article 

month wash-out, 
assisted,  

Reading clinicians: Radiologist with 
<5 years’ experience reading X-rays 
that were not ultimately sent for CT 
imaging (No consultant support). 
Process: Reading of the X-rays with 
the AI results was performed without 
access to any other clinical 
information, including the clinical 
history of the patient. It took place 3 
months after the comparison test 
(unassisted reading of the X-rays) 

information and was able to 
examine the patient if necessary. 
They consulted with an 
orthopaedic surgeon to determine 
if CT imaging was required to 
confirm diagnosis. Patients where 
there was/wasn't a decision 
reached between radiologist and 
surgeon were analysed 
separately. Timing: NR. N = 101. 

Duron (2021), 
France, 
published 
article 

BoneView 
assisted vs 
unassisted 

Retrospective
, case-control 
with random 
selection 

Ground truth, 
Assisted and 
Unassisted 
(reader cross 
over no wash 
out): Note: The 
readers did not 
look at all 
images assisted 
and unassisted, 
instead they 
each looked at 
150 assisted 
and unassisted 

BoneView (version: NR; output: 
highlight of each region of interest 
with a box and provision of a 
confidence score regarding the 
existence of a fracture in the region 
of interest). Reading clinicians: 
Twelve independent readers (six 
radiologists and six emergency 
physicians) of various levels of 
experience (including residents and 
experts) (No consultant support 
though a number of the readers 
were considered "experts"). 
Process: Readers were blinded to 
clinical data, and no time constraints 
for reading. Readers were blinded to 
one another and to expert’s 
judgments. 

Two skeletal imaging radiologists 
with >9 years of experience 
identified the presence and 
location of a fracture. The 
presence or absence of fracture 
was determined by the majority 
opinion of at least two of the three 
MSK radiologists. Timing: NR. N 
= 600. 

Fracture 
location 

Guermazi 
(2022), USA, 
published 
article 

BoneView 
assisted vs 
unassisted 

Retrospective
, case-control 
with 
stratification 

Ground truth, 
then all X-rays 
were read either 
assisted or 
unassisted 
(randomised 
50% of each, 
switched every 
120 exams), 1 

BoneView (version NR). AI-assisted 
mixed group of clinicians: 4 
radiologists, 4 orthopaedic 
surgeons, 4 emergency medicine 
physicians, 4 emergency medicine 
physician assistants, 4 internal 
medicine physicians, and 4 family 
practice physicians. They had 2 - 18 
years of experience in radiographic 

Two experienced musculoskeletal 
radiologists with 12 and 8 years of 
experience independently 
interpreted all examinations 
without clinical information 

Staff grade 
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First author 
(date), 
location, 
publication 
type 

Index test 
and 
comparators 

Design Order of tests 
and washout 

Index tests details Reference standard details Subgroup 
data 

month washout, 
then the 
opposite x-rays 
were read 
assisted and 
unassisted 
(switched every 
120 exams) 

interpretation. All readers had 1 hour 
of training to get accustomed to the 
AI. 

Meetschen 
(2024), 
Germany, 
published 
article 

BoneView 
assisted (no 
comparator) 

Retrospective
, case-control 
with random 
selection 

Ground truth 
timing unclear. 
Note: The 
readers did not 
look at all 200 
images assisted 
and unassisted, 
instead they 
each looked at 
100 assisted 
and 100 
unassisted 
(crossover 
across readers)) 

BoneView (version: NR, stated to be 
built on the “Detectron 2” framework; 
output:  Binary. Reading clinicians: 4 
radiology residents with different 
levels of training in the radiology 
residency program, ranging from 4.5 
to 24.5 months of experience.  

Consensus between 2 consultant 
radiologists with 7 and 10 years of 
experience in musculoskeletal 
imaging with access to additional 
imaging where indicated. Timing: 
NR. N = 200.  

Staff 
grade/type 

Nguyen 
(2022), 
USA/France, 
published 
article 

BoneView 
assisted vs 
unassisted 

Retrospective
, case-control 
with random 
selection 

Ground truth, 
Each radiograph 
examined in turn 
unassisted then 
assisted (no 
wash out) 

BoneView (version: NR; output: 
Binary). Reading clinicians: Eight 
readers: 5 radiology residents 
(between the 2nd and 4th year of 
residency) and 3 expert paediatric 
radiologists (at least 7 years of 
experience, including >3 years 
specialising in paediatric radiology 
(No consultant support). Process: 
After being trained with the AI on 10 
independent cases, they were 
presented with the 300 radiographic 
examinations in random order. The 
readers analysed each radiograph 
without AI, then with AI before 
moving to the next radiograph. They 

Consensus between 2 board-
certified musculoskeletal 
radiologists with >8 of experience 
in musculoskeletal imaging        . 
If they disagreed, a third board-
certified expert MSK radiologist 
(more than 25 years of 
experience in musculoskeletal 
imaging) was involved to settle 
the matter by consensus. 
Fractures were classified as 
obvious or nonobvious depending 
on their difficulty by the three 
radiologists who established the 
ground truth. A fourth board-
certified paediatric radiologist 

Fracture 
location 
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First author 
(date), 
location, 
publication 
type 

Index test 
and 
comparators 

Design Order of tests 
and washout 

Index tests details Reference standard details Subgroup 
data 

had no time constraints to analyse 
the radiographs. They were asked 
first to mark the fractures by level of 
confidence, doubtful or certain. After 
consulting the AI-aided results, they 
could modify their diagnosis or 
change the confidence in their 
diagnosis. 

(T.N. with 5 years of 
specialisation in paediatric 
imaging) also reviewed all 
radiographs after the ground truth 
was determined to classify 
fractures by type. Timing: NR. N = 
300. 

Oppenheimer 
(2023), 
Germany, 
published 
article 

BoneView 
assisted vs 
unassisted 

Prospective, 
consecutive 
sampling 

Unassisted, 
assisted (no 
wash-out), 
ground truth 

BoneView (version: NR; stated to be 
based on Detectron 2 framework 
output: this software returned a 
diagnosis of “Positive,” “Doubt,” or 
“Negative” with a through line where 
a fracture was diagnosed and a 
bounding box with a dashed line 
where a fracture was possible 
(“Doubt”). The AI set the threshold of 
“Doubt” at 50–89% confidence and 
“fracture” at greater than or equal to 
90%. Additionally, the AI marks 
regions of interest where it 
diagnoses a joint effusion or 
dislocation. Reading clinicians: 
Resident radiologist 

An experienced board-certified 
radiologist reviewed the index 
results and either signed off 
unchanged or corrected 
accordingly. Unclear if this 
process included consideration of 
the AI results. Where CT, MRI, 
PET was performed within one 
week after the initial radiographic 
exam, and no new trauma or 
symptoms were indicated, this 
diagnosis of this imaging was 
used as the gold-standard 
reference, noting where the final 
report diagnosis was overruled 
(12.8%). Timing: NR but possibly 
24 hours based on typical 
practice. N = 1163. 

Fracture 
location 

Rayvolve       

Fu (2024), 
USA, 
published 
article 

Rayvolve 
assisted vs 
unassisted 

Retrospective
, case-control 
with random 
selection 

Ground truth, 
Assisted, 1 
month wash out, 
Unassisted 

Rayvolve (version: NR; output: 
binary). Reading clinicians: The 
readers included eight each of 
emergency physicians, non-MSK 
radiologists, and MSK radiologists. 
This portion of the study consisted of 
two independent reading sessions 
separated by a washout period of at 
least one month to avoid memory 
bias. 

Consensus between 3 US board-
certified MSK radiologists, each 
with 7–16 years of experience, 
who independently interpreted 
images using the standard clinical 
definition of a fracture. Timing: 
NR. N = 2626.  

Staff 
grade/type 
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First author 
(date), 
location, 
publication 
type 

Index test 
and 
comparators 

Design Order of tests 
and washout 

Index tests details Reference standard details Subgroup 
data 

RBFracture       

Bachmann 
(2024), 
US/Denmark, 
published 
article 

RBFracture 
assisted vs 
unassisted 

Retrospective
, case-control 
with random 
selection 

Ground truth, 
Assisted and 
Unassisted 
(reader cross 
over with 4-
week washout) 

RBFracture (version: NR; output: 
binary using bounding boxes). 
Reading clinicians: 15 readers: 2 
advanced trauma care nurses, 3 
diagnostic radiographers, 4 A&E 
trainees, 3 orthopaedic specialty 
registrars, 3 radiology specialty 
registrars. All provided with written 
instructions and 5 training cases. 
Process: Two sessions with a 4 
week wash out period. In each 
session, half of the images were 
read aided and the other half 
unaided. This was reversed in the 
second reading session.  

Consensus between 2 consultant 
radiologists with 1- and 10-years 
post-specialty experience. 
Disagreements arbitrated by a 
third consultant radiologist with 14 
years’ experience. Each 
radiologist had access to clinical 
referral notes and the original 
radiology reports. Timing: NR. N = 
340 (6 didn't receive reference 
standard).   

Staff 
grade/type 

Jørgensen 
(2023), 
Denmark, 
abstract 

RBFracture 
assisted vs 
unassisted 

Retrospective
, case-control 
with 
stratification 

Unclear RBFracture (version: NR; output: 
NR). Reading clinicians: Two 
radiographers, two medical interns 
and two consultants (not clear if they 
were radiologists). Process: 
Evaluated fracture status on all 
exams with support from the AI tool 

The radiological reports, taking 
additional information from CT 
into consideration when relevant. 
Timing: NR. N = 214. 

None 

Radiobotics 
(2021), 
USA/Denmark, 
company 
document. 
Bonde 
[unpubished] 
contained 
methods info 
and results for 
Denmark only. 

RBFracture 
assisted vs 
unassisted 

Retrospective
, case-control  

Order unclear, 
different readers 
read different 
sets of images.  

RBFracture (version: ***; output: 
binary. Bounding boxes were placed 
around the location of a positive 
result). Reading 
clinicians*******************************
*****************************************
*****************************************
*****************************************
*****************************************
*****************************************
*****************************************
*************** 

Two radiologists with more than 4 
years of musculoskeletal 
experience. Any disagreements 
were resolved by a reporting 
radiographer with 11 years of 
experience, specialising in MSK-
reporting. 
**************************************
**************************************
**************************************
**********************************Timi
ng: NR. N = 312. 

Staff 
grade/type 
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First author 
(date), 
location, 
publication 
type 

Index test 
and 
comparators 

Design Order of tests 
and washout 

Index tests details Reference standard details Subgroup 
data 

*****************
*****************
*****************
**** 

****************
****************
* 

****************
****************
*** 

*******************
*******************
*******************
*******************
*******************
*******************
************* 

*****************************************
*****************************************
*****************************************
*****************************************
*****************************************
*****************************************
**** 

**************************************
**************************************
**************************************
**************************************
**************************************
**************************************
**************************************
**************************************
*********************** 

*************
**** 

*****************
*****************
********* 

****************
****************
* 

****************
****************
*************** 

******* *****************************************
*****************************************
*****************************************
*****************************************
*****************************************
*****************************************
*****************************************
*****************************************
*****************************************
*****************************************
****************** 

**************************************
**************************************
**************************************
**************************************
**************************************
**************************************
**************************************
*** 

*************
*** 

TechCare Alert      

Suite (2020), 
France, 
document 

TechCare 
assisted vs 
unassisted 

Retrospective
, case-control 
with random 
selection 

Ground truth, 
Unassisted, 
Assisted (No 
wash out: the 
readers looked 
at different 
images assisted 
and unassisted) 

TechCare Alert (version: described 
as SmartUrgences 'Arterys' MSK AI 
module'; output: not described 
although assume binary by the 
results). Reading clinicians: Four 
junior radiologists with AI. Process: 
a random selection of previous 
cases with known diagnoses were 
identified. The 650 cases were split 
between the eight radiologists (four 
junior and four senior) for review 
without and with AI. The readings 
were conducted without access to 
other information, such as medical 
history. 

The original radiology report (i.e. 
when the patient was first treated) 
was used. Stated that a 
radiologist reads all X-rays after a 
24-hour delay. Timing: NR; prior 
to study. N = 650 (30 didn't 
receive reference standard).   

Staff 
grade/type 

Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging; MSK, musculoskeletal; NR, not reported; PET, positron emission tomography 
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4.2.2. Populations and reported prevalence 

Demographics about the study sample used in the included studies, including prevalence rates 

of any and subgroup fracture types, are shown in As noted in Section 4.2.1, the EAG 

considered that studies using a case-control design would not provide prevalence data that was 

representative of clinical practice. The data from these studies should therefore be considered 

to only represent the case mix in the included studies and was not used as an estimate of 

fracture prevalence in the economic analysis. The EAG noted that the most methodologically 

robust study for the estimation of prevalence was likely Cohen 2023, but this study focused only 

on wrist fractures. Other studies that were reasonably robust for estimating prevalence were 

Dell-Aria 2024 and Fu 2024 (albeit both limited due to relatively small sample sizes), and 

*****************************************************************************************). Amongst the 

studies that used consecutive and random sampling, rates of subgroup fracture types were 

rarely reported. Where these were available, these varied between studies, suggesting that the 

study samples included different underlying populations. As diagnostic accuracy for detecting 

fractures on X-rays varies according to fracture location, variation in case mix across studies will 

likely influence the findings. 
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Table 4. Studies with more reliable prevalence data (i.e. studies with consecutive and random 

sampling) are highlighted in bold. 

Studies typically only included adults, or the vast majority of the sample were adults (see 
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). There were five studies10 11 16 17 23 that included a mix of adults, children and young people, of 

which two studies16 17 reported subgroup data specifically in children and young people. Two 

studies were conducted only in children and young people (Nguyen 2022 and Yogendra 

[unpublished]).  

No studies reported frailty measures for its participants. Two studies7 18 reported that the mean 

age of the sample was > 70 years. One study24 conducted with participants with a median age 

of 39 years (no range reported) who had all experienced a low velocity trauma, and one study 

reported that 83.0% of injuries were due to falls. The EAG considered that all of these indicators 

may be correlated with frailty, but nevertheless wouldn’t provide a meaningful representation of 

outcomes in people with frailty. 

The EAG sought additional information from studies about the health of participants, such as the 

number of participants with diseases that affect bone health (e.g. osteoporotic disease). No 

studies reported this information. 

Eight studies9-11 13 14 17 24 25 reported that a minority of participants had multiple fractures; where 

rates were reported, these ranged from 3.3% to 26% of the study sample. None of the studies 

excluded suspected dislocations and effusions, although only one study22 stated that the study 

sample included these injuries. Three studies7 13 24 explicitly excluded ‘obvious’ fractures, such 

as open fractures, displaced, and multi-fragmented and those caused from polytrauma, while 

other studies neither included nor excluded these. Within the EVA, the EAG did not extract 

information of the full range of fracture types included in the study samples from which to 

consider the case mix in which the technologies were evaluated. As noted in Section 4.2.1, the 

EAG considered that studies using a case-control design would not provide prevalence data 

that was representative of clinical practice. The data from these studies should therefore be 

considered to only represent the case mix in the included studies and was not used as an 

estimate of fracture prevalence in the economic analysis. The EAG noted that the most 

methodologically robust study for the estimation of prevalence was likely Cohen 2023, but this 

study focused only on wrist fractures. Other studies that were reasonably robust for estimating 

prevalence were Dell-Aria 2024 and Fu 2024 (albeit both limited due to relatively small sample 

sizes), and *****************************************************************************************). 

Amongst the studies that used consecutive and random sampling, rates of subgroup fracture 

types were rarely reported. Where these were available, these varied between studies, 

suggesting that the study samples included different underlying populations. As diagnostic 
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accuracy for detecting fractures on X-rays varies according to fracture location, variation in case 

mix across studies will likely influence the findings. 
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Table 4: Study participants and fracture types 

First 
author 
(Date) 

Tech Mean age (SD) 
and sex 

N 
participa
nts/N 
exams 

N with 
fractures 
(%) 

N (%) 
multiple 
fractures 

Prevalen
ce hip  

Prevalen
ce foot/ 
ankle  

Prevalen
ce hand/ 
wrist  

Prevalen
ce elbow 
in 
children  

Prevalen
ce Salter 
Harris in 
children  

Head-to-head comparison         

Bousson 
(2023) 

BoneView
/Rayvolve
/SmartUr
gence 

Age: 41.3  (18.5) 
years (range=NR). 
Sex: 468F:742M 

1210 
people/ 
1500 
exams 

326* 
(21.7%) 

NR 50 
(3.3%; 
pelvis/hi
p) 

Ankle 
232 
(15.5%); 
Foot 186 
(12.4%)  

314 
(20.9%)  

NR  NR 

BoneView           

Cohen 
(2023) 

BoneView Age: NR 
(range=NR). Sex: 
NR 

637 
people/ 

1917 X-
rays 

247 
(38.8%) 

166 
(26%) 

0% 0% 247 
(38.8%) 

0% NR 

Canoni-
Meynet 
(2022) 

BoneView Age: 37 yrs (28); 
80.2% were adults 
(range=0.25−99 
yrs). Sex: 
232F:268M 

500 188 
(37.6%) 

35 (7%) NR 39 
(7.8%) 

38 
(7.6%) 

NR NR 

Dell-Aria 
(2024) 

BoneView Age: median 39 
(range=NR). Sex: 
51F:50M 

101 54 
(53.9%) 

15 
(14.8%) 

NR NR NR NR NR 

Duron 
(2021) 

BoneView Age: 57 (22) 
(range=18–100 
years). Sex: 
358F:242M 

600 
people/ 
600 
exams 

300 
(50%) 

80 (13%) NR Foot: 44 
(7.4%) 

Hand: 44 
(7.3%) 

NR NR 

Guermazi 
2022 

BoneView Age: 59 (16) (range 
NR). Sex: 327F:153 

480 240 
(50%) 

16 
(3.3%) 

44 
(9.2%) 

38 
(7.9%) 

52 
(10.8%) 

NR NR 

Meetsche
n (2024) 

BoneView Age: 40.7 (24.5) 
(range=1-95 years). 
Sex: 95F:105M 

200 100 
(50%) 

NR; 
stated 
that 135 
fractures 
were in 
100 X-
rays 

8 (4%; 
pelvis or 
hip) 

46 (23%) 49 
(24.5%) 

NR NR 
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First 
author 
(Date) 

Tech Mean age (SD) 
and sex 

N 
participa
nts/N 
exams 

N with 
fractures 
(%) 

N (%) 
multiple 
fractures 

Prevalen
ce hip  

Prevalen
ce foot/ 
ankle  

Prevalen
ce hand/ 
wrist  

Prevalen
ce elbow 
in 
children  

Prevalen
ce Salter 
Harris in 
children  

Nguyen 
(2022) 

BoneView Age: 10.8 (4.9) 
(range=2 to 21). 
Sex: 133F:167M 

300 150 
(50%) 

NR; 
stated 
that 173 
fractures 
were 
found in 
150 
people 

0 30 (10%) 30 (10%) 60 (20%; 
elbow or 
arm) 

Salter II: 
21 (7%), 
Salter IV: 
3 (1%) 

Oppenhei
mer 
(2023) 

BoneView Age: 61.39 (21.9) 
(range=2 - 100). 
Sex: 426F:309M 

735 
people/1
163 
exams 

367* 
(31.56%) 

NR NR NR NR NR NR 

Rayvolve           

Fu (2024) Rayvolve Age: NR 
(range=NR but 
minimum 21 
years). Sex: 
1223F:1403M 

2626 X-
rays 

587* 
(22.4%) 

NR 53 (2%) Foot: 56 
(2.1%) 
Ankle: 
55 
(2.1%) 

Hand: 48 
(1.8%) 
Wrist: 72 
(2.7%) 

35 
(1.3%) 

NR 

RBFracture          

Bachmann 
(2024) 

RBFractur
e 

Age: NR; 236 
Adults, 98 children 
(range=NR). Sex: 
136F:106M missing 
n=92 

334 
people/ 
340 
exams 

164 
(49.1%) 

NR 
although 
stated 
that 
participa
nt with 
multiple 
fractures 
were 
included 

19 (5.7%; 
pelvis or 
hip) 

30 
(9.0%) 

30 
(9.0%) 

9 (2.7%) NR 

Jørgensen 
(S9 
Abstract) 
(2023) 

RBFractur
e  

Age: 78.0 (11.9) 
(range=NR). Sex: 
149F:65M 

214 107 
(50%) 

NR 107 
(50%) 

0 0 0 0 
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First 
author 
(Date) 

Tech Mean age (SD) 
and sex 

N 
participa
nts/N 
exams 

N with 
fractures 
(%) 

N (%) 
multiple 
fractures 

Prevalen
ce hip  

Prevalen
ce foot/ 
ankle  

Prevalen
ce hand/ 
wrist  

Prevalen
ce elbow 
in 
children  

Prevalen
ce Salter 
Harris in 
children  

Radiobotic
s (2021); 
Bonde 
(manuscri
pt in prep); 
confidenti
al study 
report 

RBFractur
e 

Age: XX  (XXX) 
(range= XX XXX). 
Sex: XXXXXXX2828 

312 156 
(50%) 

NR 156 
(50%) 

0 0 0 0 

************
************
******** 

********** **********************
**********************
* 

**** *********** ** ** ** ** ** ** 

************
************
***** 

********** **********************
**********************
**********************
** 

*** ********* ** ** ** ** ** ** 

TechCare Alert          

Suite 
(2020) 

TechCare Age: 53.6 (23.9) 
(range=18, 98). 
Sex: NR 

620 253 
(40.8%); 
dislocatio
n 28 
(4.5%); 
effusion 
25 
(36.2%) 

NR 67 
(10.8%) 

144 
(23.2%) 

134 
(21.6%) 

30 
(9.4%) 

NA 

Abbreviations: F, female; M, male; NA, not applicable; NR, not reported; SD, standard deviation 

Note: Studies that used consecutive or random sampling, and therefore offer more reliable prevalence rate data, are highlighted in bold. * this is the number of 
fractures identified across the exams, meaning that a participant with multiple fractures would be counted more than once. 
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4.2.3. Outcomes 

The outcomes reported by, or calculable from, the included studies are shown in Table 5.  

Sensitivity, specificity, and contingency tables were reported or calculable for all studies, 

although some data were missing for specificity and contingency tables for subgroup analyses 

(staff grade and fracture types) in two studies11 16. PPV and NPV were either not reported or 

were not extracted for case-control studies. Additional outcomes reported by a small number of 

studies were the prevalence of fractures, as assessed using the reference standard (see 

Section 4.2.21.1.1), and the reading time for radiographs. The vast majority of outcomes listed 

on the NICE scope were not reported in any of the included studies (see Section 9).  

Diagnostic accuracy that was reported per patient (i.e. a binary decision about whether a patient 

had a fracture) was typically reported across studies and prioritised for inclusion in the review. If 

these data were not provided, available per-exam or per-fracture data were extracted and these 

instances are highlighted in the results. The decision to prioritise per-patient data was made 

primarily because the majority of studies report data in this way and because these data are 

most relevant to the economic analysis. The EAG noted that the per patient approach allows for 

the assessment of one injury only, while the per-fracture approach accounts for accuracy across 

multiple fractures in the same person, and thus means that there will be multiple reports for the 

same participant. The per-exam approach is similar to the per-patient approach and usually 

reports on one injury per patient but may plausibly detect more than one injury in the same 

location. As noted in Section 4.2.2, the samples of eight of the studies included people with 

multiple fractures, all of which reported per-patient data, which were extracted for the 

assessment. These data therefore do not fully capture the rates of fractures in the study 

samples and may overestimate the sensitivity of the technologies (since a true positive result 

may be acquired even if all fractures in the same person are not identified).  
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Table 5: Outcomes available from the included studies 

First author (Date) True 
positive 

True 
negative 

False 
positive 

False 
negative 

Sensitivity Specificity PPV NPV Reading 
time 

BoneView          

Bousson (2023) Y Y Y Y Y Y Y Y N 

Cohen (2023) Y Y Y Y Y Y Y Y N 

Canoni-Meynet (2022) Y Y Y Y Y Y Y Y Y 

Dell-Aria (2024) Y Y Y Y Y Y Y Y N 

Duron (2021) Y Y Y Y Y Y NA NA Y 

Guermazi (2022) Y Y Y Y Y Y NA NA Y 

Meetschen (2024) Y Y Y Y Y Y NA NA Y 

Nguyen (2022)* Y Y Y Y Y Y NA NA N 

Oppenheimer (2023) Y Y Y Y Y Y Y Y N 

Rayvolve          

Bousson (2023) Y Y Y Y Y Y Y Y N 

Fu 2024 Y Y Y Y Y Y Y Y Y 

RBFracture          

Bachmann (2024) Y Y Y Y Y Y NA NA N 

Jørgensen (S9 
Abstract) (2023) 

Y Y Y Y Y Y NA NA N 

Radiobotics 2021 / 
Bonde 

Y Y Y Y Y Y NA NA N 

Ruitenbeek (2024) * * * * ** ** * * * 

Yogendra (NA)* * * * * * * ** ** * 

TechCare Alert          

Bousson (2023) Y Y Y Y Y Y Y Y N 

Suite (2020) Y Y Y Y Y Y NA NA N 

Abbreviations: N, no; NA, not applicable; NPV, negative predictive value; positive predictive value; Y, yes 

Notes: *studies conducted in children only.
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4.3. Quality appraisal of studies 

As this was an EVA, no formal quality assessment of the included studies was conducted. Quality considerations that were 

considered to represent a potential source of bias have been discussed throughout the previous sections.  

An overview of the way quality considerations influenced the interpretation of diagnostic evidence and the selection of evidence to 

inform the economic analysis are shown in Table 6. Coloured ratings are provided for ease of reference, though the EAG emphasise 

that these ratings are relative to each other and none of the included evidence was considered to be robust for diagnostic outcomes.  

Table 6: Quality considerations for the interpretation of diagnostic accuracy of the technologies 

First 

author 

(date) 

Index test and 

comparators  

Good for sensitivity and specificity?  Good for prevalence, NPV and PPV? 

Head-to-head study 

Bousson 

(2023) 

BoneView/Rayvolve/Te

chCare Alert (no 

unassisted 

comparator)   

AMBER. Limited by the reference standard including AI results 

 

AMBER. Good due to consecutive sampling, but limited by 

the reference standard including AI results 

BoneView 

Canoni-

Meynet 

(2022) 

BoneView assisted vs 

unassisted  

AMBER. Limited by the reference standard including AI results AMBER. Good due to consecutive sampling, but limited by 

the reference standard including AI results 

Cohen 

(2023) 

BoneView standalone + 

reader (no 

comparator) vs 

unassisted 

AMBER. Limited by having no comparator (assisted only) GREEN. Good due to consecutive sampling, NPV and PPV 

limited to assisted only, limited to wrist only 

Dell-Aria 

(2024) 

BoneView assisted vs 

unassisted  

AMBER. Limited by relatively small sample size and reference 

standard decision by a single radiologist 

AMBER. Good due to consecutive sampling, but limited by 

relatively small sample size and reference standard decision 

by a single radiologist 
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Duron 

(2021) 

BoneView assisted vs 

unassisted  

GREEN. Good for sensitivity and specificity estimates 

 

 RED. No, case-control design 

Guermazi 

(2022) 

BoneView assisted vs 

unassisted 

AMBER. Limited by high number of obvious fractures  RED. No, case-control design 

Meetsche

n (2024) 

BoneView assisted (no 

comparator)  

AMBER. Limited by relatively small sample size, also by having 

no comparator (assisted only) 

 RED. No, case-control design 

Nguyen 

(2022) 

BoneView assisted vs 

unassisted  

GREEN. Good for sensitivity and specificity estimates 

 

 RED. No, case-control design 

Oppenhei

mer 

(2023) 

BoneView assisted vs 

unassisted  

AMBER. Limited by the reference standard including AI results AMBER. Good due to consecutive sampling, but limited by 

the reference standard including AI results 

RBFracture 

Bachman

n (2024) 

RBFracture assisted vs 

unassisted  

GREEN. Good for sensitivity and specificity estimates 

 

 RED. No, case-control design 

Jørgensen 

(2023) 

RBFracture assisted vs 

unassisted  

AMBER. Limited by unclear reference standard and publication 

type (abstract) 

 RED. No, case-control design 

Radiobotic

s (2021) 

and 

Bonde 

RBFracture assisted vs 

unassisted  

AMBER. Limited by publication type (not peer-reviewed 

publication) 

 RED. No, case-control design 

Ruitenbee

k (2024) 

***************************

******* 

*****. ************************************** *****. 

***************************************************************** 

Yogendra 

(unpublish

ed) 

***************************

******* 

**************************************************************************

********************* 

**********************************************************************

******************** 

Rayvolve 

Fu (2024) Rayvolve assisted vs 

unassisted  

AMBER. Limited by relatively small sample size 

 

AMBER. Good due to random sampling, but limited by 

relatively small sample size 

TechCare 
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Suite 

(2020) 

TechCare assisted vs 

unassisted  

AMBER. Limited by publication type (not peer-reviewed) and 

reference standard decision by a single radiologist 

 RED. No, case-control design 

Abbreviations: NPV, negative predictive value; PPV, positive predictive value
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5. CLINICAL, SERVICE AND TECHNOLOGICAL EVIDENCE RESULTS 

5.1. Results from the evidence base and evidence synthesis 

5.1.1. Diagnostic accuracy 

The diagnostic accuracy of the technologies as reported by the included studies and/or 

calculated by the EAG are shown in Table 7. Data were calculated where these were not 

reported in publications. In some cases, calculated data varied slightly from that reported in the 

publication, which the EAG assumed was due to rounding errors, alternative methods for 

handling missing data, or reporting errors. The EAG selected the most reliable data for inclusion 

in the report tables and the evidence synthesis, meaning that some data (in all cases, rates of 

TP, FP, TN, FN) differed from those reported in the publications. As noted in Section 4.2.3, 

diagnostic data were calculated per patient (i.e. one result per patient, meaning that the analysis 

did not account for multiple fractures in the same person), unless otherwise indicated.  

Only three studies13 17 21 reported outcomes for readers based within emergency care settings, 

each evaluating a different technology: one study13 compared assisted and unassisted readings 

with BoneView as read by emergency physicians; one study21 reported assisted and unassisted 

readings with Rayvolve as read by emergency physicians; and one study17 reported assisted 

and unassisted readings with RBFracture as read by A&E trainees or trauma-care nurses. Most 

of the included studies reported multiple analyses according to the level of experience of 

clinicians reading the X-rays. As the protocol for this assessment included a comparison of 

diagnostic accuracy across staff reading experience, evidence reported for readers of varying 

levels of experience was extracted. The EAG noted that those with more seniority and expertise 

in reading X-rays, would not be expected to use the technology in clinical practice and that 

these data are presented for comparison purposes only. To aid interpretation of the findings 

across reader experience, the EAG grouped results according to the description of reader 

experience and seniority described in the publications. As all of the included studies were based 

outside of the UK, staff grades used in the publications had unclear relevance to target 

clinicians within NHS settings, which meant that some groupings were uncertain. Three staff 

groupings were created: readers described by studies as having less experience with reading X-

rays, including staff specified as being based within emergency settings as well as those stated 

to have less experience in reading X-rays; senior and expert staff, intended to be consistent with 

a consultant radiologist and reporting radiographer grade; and a mixed and unclear grouping, 

where results were reported for groups of readers who varied widely in experience level and 
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studies where reader descriptions did not fit easily within the less experienced and senior 

groups. The EAG noted that, in some studies, staff described as radiologists were nevertheless 

described as having less experience in reading X-rays, leading the EAG to assume that the 

term ‘radiologist’ may have a broader range of experience than would be expected within the 

NHS. In these cases, the EAG classified these as less experienced staff, though considered 

these groupings to be particularly uncertain, since descriptions in the publications may have 

been misleading. 

Inspection of the results suggested that the groupings of studies according to reader experience 

was not particularly successful: in general, readers with greater seniority and expertise at 

reading X-rays were associated with more accurate diagnosis unassisted, though this was not 

universal across groupings. As this lacked face validity, the EAG assumed that the groupings 

according to reader experience were incorrect in some instances and so should be interpreted 

with caution when pooled (see Section 5.2). 

Evidence from across the comparative studies generally suggested a trend for the technologies 

to improve sensitivity for diagnosing fractures in a mix of fracture types and across all reader 

groupings, but to have little or no impact on specificity. This trend was also present in those 

studies13 17 21 specific to readers based within emergency care settings. The comparability of 

outcomes between studies in emergency care settings was uncertain due to variation in the 

sensitivity of unassisted emergency physicians considered in both the Duron (2021) and Fu 

(2024) studies (sensitivity was reported as 61.3% in Duron and 79.2% in Fu), suggesting that 

staff experience or approach to decision-making varied between the studies. Nevertheless, the 

technologies improved sensitivity by a similar amount, with little or no change in specificity. 

Assistance with RBFracture in Bachmann (2024) improved sensitivity for trauma care nurses 

also by a similar amount, also with some benefit to specificity. The benefit to sensivitity for A&E 

trainees with RBFracture in the same study was smaller, with minimal benefit to specificity. 

However, in this study, unassisted A&E trainees had higher accuracy for detecting fractures 

unassisted than trauma care nurses and were no worse than either of the emergency 

physicians in Duron (2021) and Fu (2024). 

5.1.1.1. Evidence from selected pivotal studies 

The selection of pivotal studies for informing the economic analysis is described previously in 

this report. Nevertheless, the EAG cautions again that these studies were selected for being the 
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most robust estimates within their design compared to other studies identified in the evidence 

base, but nevertheless still have limitations and should be interpreted with caution. 

For BoneView, in a mixed group of readers including radiologists and ED doctors, Duron 2021 

reported sensitivity as 79.4% (SD 7.4) when assisted by the technology and 70.8% (SD 12.5) 

when unassisted. Specificity was 93.6% (SD 4.6) assisted and 89.5% (SD 6.5) unassisted. All 

participants in this study were adults. Similarly, using readers who were radiology residents with 

variable levels of experience, Nguyen 2022 reported a higher sensitivity with AI assistance 

(82.67%, 95% CI 75.65, 88.36) than without assistance (73.17%, 95% CI 65.33, 80.07) and a 

higher AI assisted specificity (90.33%, 95% CI 84.43, 94.55) than without AI assistance 

(89.58%, 95% CI 83.55, 93.97). Nguyen 2022 reported subgroup data for children and young 

adults and these data are presented in section 5.1.2 alongside data for children from other 

studies.  

For RBFracture the pivotal study of sensitivity and specificity estimates was Bachmann 2024 

(albeit with the caveats described above). In this study, when readers were a mixed group of 

emergency care staff with a moderate level of experience, sensitivity was reported as higher 

with AI assistance (0.80, 95% CI 0.78-0.82) than without (0.72, 95% CI 0.70-0.73). Likewise, AI 

assisted specificity was higher (0.85, 95% CI 0.84-0.87) than unassisted (0.81, 95% CI 0.80-

0.83). Subgroup data were also available for children (see section 5.1.2), and for more junior 

staff (Table 7).  

Similarly, the pivotal Rayvolve study (Fu 2024), provided sensitivity and specificity data for a 

mixed group of readers (emergency physicians, non-MSK radiologists, and MSK radiologists) 

and reported a higher sensitivity with AI assistance (0.955, 95% CI 0.944, 0.964) than without 

assistance (0.865, 95% CI 0.848, 0.881). In this study, specificity was similar with and without AI 

assistance (0.831, 95% CI 0.817, 0.845 and 0.826, 95% CI 0.812, 0.840 respectively). 

Subgroup data were available for emergency physicians (Table 7). The TechCare Alert study 

(Suite 2020) provided data only for junior radiologists and data were sparse and without 

confidence intervals (Table 7).  

The EAG noted that although these sensitivity and specificity estimates may appear to differ 

across technologies, due to clinical and methodological heterogeneity between studies, and the 

overall paucity of robust data, it remains difficult to comment on whether any AI technology 

performed better than another. Although the head-to-head study (Bousson 2023) provided 

sensitivity and specificity data across three of the included technologies, the EAG highlighted 
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that these data were likely limited to a greater extent than the pivotal studies by the inclusion of 

the AI results in the reference standard. This study also did not include readers likely to be 

involved in emergency assessments of x-rays in UK clinical practice.  

The pivotal studies for sensitivity and specificity estimates did not report other DTA data, due to 

study design features previously described. The EAG emphasised the need for caution when 

interpreting all DTA results (all studies are likely to be very limited), and in particular any 

prevalence, PPV and NPV estimates provided in the studies. When looking at the PPV and NPV 

data, the most robust data were from Cohen 2023, but these estimates were only relevant to 

wrist fractures (Table 7).  

5.1.1.2. PPV and NPV from other included studies 

Other studies with potentially reasonable designs for estimating PPV and NPV were Dell-Aria 

(2024) for BoneView, Ruitenbeek (2024) for RB Fracture, and Fu (2024) for Rayvolve (noting 

that Ruitenbeek and Fu are limited by the use of retrospective study designs, and Dell-Aria 2024 

by a relatively small sample size). Indeed, of these three studies, only Dell-Aria reported PPV 

and NPV data (Table 7). The EAG calculated PPV and NPV for the other two studies but 

highlighted the potential lack of generalisability to clinical practice. For Fu 2024, for a mixed 

group of readers, the EAG calculated PPV was slightly higher with Rayvolve than without (61.92 

and 58.86 respectively), as was NPV (98.49 and 95.52 respectively). Similar results were found 

for the junior readers, i.e. the EAG calculated PPV was slightly higher with Rayvolve than 

without (64.75 and 60.63 respectively), as was NPV (97.97 and 93.44 respectively). For 

Ruitenbeek, for a mixed group of readers, the EAG calculated PPV was slightly higher with 

RBFracture than without (***** and ***** respectively), as was NPV (***** and ***** respectively). 

PPV and NPV were overall lower for the junior readers but were similarly higher with 

RBFracture than without (PPV ***** and ***** respectively; NPV ***** and ***** respectively). 
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Table 7: Diagnostic accuracy of included technologies (mixed fracture and age groups)  

Author 
(date). 
Target 
fractures. 

Prev 
(reference 
standard) 

Less experienced 
readers assisted 

Less experienced 
readers 
unassisted 

Mixed or unclear 
staff level 
assisted 

Mixed or unclear 
staff level 
unassisted 

Senior and highly 
experienced staff 
assisted 

Senior and highly 
experienced staff 
unassisted 

BoneView        

Bousson 
(2023). 

Age range 
NR; likely 
all or 
mostly 
adults.  

Hand, 
wrist, arm, 
elbow, 
shoulder, 
pelvis, hip, 
leg, knee, 
ankle, foot.  

326/1500 
(26.9%) 

. . Radiology 
residents (4 years 
of residency).  

Sensitivity 91.3 
(88.2-93.6); 
specificity 90.5 
(89.1-92.3); PPV 
NR; NPV NR. 

 

TP 298 

FP 112 

TN 1062 

FN 28 

. . . 

Canoni-
Meynet 
(2022) 

Age 0.25 – 
99 years; 
80.2% 
were 
adults.  

All 
fractures  
excluding 
skull and 
face. 

188/500 
(37.6%) 

Third year 
radiology resident. 

Sensitivity 89 
(83−93); specificity 
93 (89−95); PPV 
88 (83−92); NPV 
93 (90−96) 

 

TP 167 

FP 23 

TN 189 

FN 21 

Third year 
radiology resident.  

Sensitivity 68 
(60−74); specificity 
96 (93−98) ; PPV 
91 (87−96); NPV 
83 (79−87)  

 

TP 127 

FP 12 

TN 300 

FN 61 

. . Senior radiologist.  

Sensitivity 88 
(83−93); specificity 
99 (98−100) ; PPV 
: 98 (97−100); NPV 
93 (91−96)  

 

TP 166 

FP 2 

TN 310 

FN 22 

Senior radiologist. 

Sensitivity 70 
(63−77); specificity 
96 (94−98); PPV 
92 (88−97); NPV 
84 (80−88) 

 

TP 132 

FP 11 

TN 301 

FN 56 

Dell-Aria 
(2024). 

Age range 
NR; mean 
age 39 
years.  

54/101 
(53.9%) 

 

Injuries 
that 
required 
additional 

AI assisted 
radiologist with <5 
years’ experience.  

 

Injuries that did not 
require other 
imaging. Sensitivity 

Unassisted 
radiologist with <5 
years’ experience. 

 

Injuries that did not 
require other 
imaging. Sensitivity 

. . AI assisted 
radiologist with >15 
years’ experience  

 

Injuries that did not 
require other 
imaging. Sensitivity 

Unassisted 
radiologist with >15 
years’ experience 

 

Injuries that did not 
require other 
imaging. Sensitivity 
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Author 
(date). 
Target 
fractures. 

Prev 
(reference 
standard) 

Less experienced 
readers assisted 

Less experienced 
readers 
unassisted 

Mixed or unclear 
staff level 
assisted 

Mixed or unclear 
staff level 
unassisted 

Senior and highly 
experienced staff 
assisted 

Senior and highly 
experienced staff 
unassisted 

Low 
velocity 
trauma to 
upper or 
lower limbs 
(including 
shoulder 
and hip). 

imaging: 
32/51 
(62.7%) 

77.27; specificity 
88.29; PPV 85; 
NPV 83.33 

 

Injuries that did 
require additional 
imaging.  

Sensitivity 56.25; 
specificity 78.95; 
PPV 81.82; NPV 
51.72 

 

TP 18 

FP 4 

TN 15 

FN 14 

50.0; specificity 
82.14; PPV 68.75; 
NPV 67.65 

 

Injuries that did 
require additional 
imaging.  

Sensitivity 31.25; 
specificity 89.47; 
PPV 83.33; NPV 
43.59 

 

TP 10 

FP 2 

TN 17 

FN 22 

95.45; specificity 
89.29; PPV 87.5; 
NPV 96.15 

 

Injuries that did 
require additional 
imaging. 

Sensitivity 81.25; 
specificity 89.47; 
PPV 98.86; NPV 
73.91 

 

TP 26 

FP 2 

TN 17 

FN 6 

86.36; specificity 
89.29; PPV 86.36; 
NPV 89.29 

 

Injuries that did 
require additional 
imaging. 

Sensitivity 56.25; 
specificity; 89.47; 
PPV 90; NPV 
54.84 

 

TP 18 

FP 2 

TN 17 

FN 14 

Duron 
(2021). 

Age range 
18 – 100 
years; 
mean 57.  

Shoulder, 
arm, hand, 
pelvis, leg, 
foot 

300/600 
(50%) 

Assisted 
emergency 
physicians 

 

Sensitivity 74.3 
(SD 6.6); specificity 
96.6 (1.9) 

 

TP 223 

FP 10 

TN 290 

FN 77 

Unassisted 
emergency 
physicians 

 

Sensitivity 61.3 
(SD 9.3); specificity 
90.6 (5.8) 

 

TP 184 

FP 28 

TN 272 

FN 116 

AI assisted six 
radiologists and six 
emergency 
physicians, 
including residents 
and experts.  

 

Sensitivity 79.4% 
(SD: 7.4); 
specificity 93.6%  
(4.6); PPV NR; 
NPV NR 

 

TP 238 

FP 19 

TN 281 

FN 62 

Unassisted six 
radiologists and six 
emergency 
physicians, 
including residents 
and experts.  

 

Sensitivity 70.8% 
(SD: 12.5); 
specificity 89.5% 
(6.5); PPV NR; 
NPV NR 

 

TP 212 

FP 31 

TN 269 

FN 88 

. . 

Meetschen 
(2024).  

100/200 
(50%) 

. . Radiology 
residents 4.5 to 

A radiology 
resident without AI.  
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Author 
(date). 
Target 
fractures. 

Prev 
(reference 
standard) 

Less experienced 
readers assisted 

Less experienced 
readers 
unassisted 

Mixed or unclear 
staff level 
assisted 

Mixed or unclear 
staff level 
unassisted 

Senior and highly 
experienced staff 
assisted 

Senior and highly 
experienced staff 
unassisted 

Age range 
1 – 95 
years; 
mean 40.7.  

Hand, 
wrist, arm, 
elbow, 
shoulder, 
scapula, 
clavicle, 
ribs, spine, 
pelvis, hip 
joints, legs, 
knees, 
ankles, 
and feet 

24.5 months of 
experience).  

Sensitivity 77 (72 - 
82); specificity 79 
(73 -84); PPV 81% 
(76 - 86); NPV 75% 
(69 - 80) 

 

TP 77 

FP 21 

TN 79 

FN 23 

 

 

Sensitivity 58 (52-
64); specificity 77 
(71-81); PPV 74 
(67-79); NPV 62 
(56-67) 

 

TP  58 

FP 23 

TN 77 

FN 42 

Nguyen 
(2022). 

Children 
and young 
people, 
age range 
2 – 21 
years; 
mean 10.8. 

Appendicul
ar 
skeleton. 

150/300 
(50%) 

. . AI assisted, eight 
readers: 5 
radiology residents 
(between the 2nd 
and 4th year of 
residency) and 3 
expert paediatric 
radiologists (at 
least 7 years of 
experience, 
including >3 years 
specialising in 
paediatric 
radiology.  

Sensitivity 82.67 
[75.65, 88.36]; 
specificity 90.33 
[84.43, 94.55]; PPV 
NR; NPV NR 

 

TP 124 

FP 15 

Unassisted eight 
readers: 5 
radiology residents 
(between the 2nd 
and 4th year of 
residency) and 3 
expert paediatric 
radiologists (at 
least 7 years of 
experience, 
including >3 years 
specialising in 
paediatric radiology 

. Sensitivity 73.17 
[65.33, 80.07]; 
specificity 89.58 
[83.55, 93.97]; PPV 
NR; NPV NR 

 

TP 110 

FP 16 

TN 134 

. . 
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Author 
(date). 
Target 
fractures. 

Prev 
(reference 
standard) 

Less experienced 
readers assisted 

Less experienced 
readers 
unassisted 

Mixed or unclear 
staff level 
assisted 

Mixed or unclear 
staff level 
unassisted 

Senior and highly 
experienced staff 
assisted 

Senior and highly 
experienced staff 
unassisted 

TN 135 

FN 26 

FN 40 

Oppenhei
mer 
(2023).^ 

Age range 
2 – 100 
years; 
mean 61.4.  

All 
excluding 
cervical 
spine, skull 
and face. 

367/1163 
(31.56%) 

. . Resident 
radiologist with AI  

Sensitivity 91.28 
(91.25, 91.31); 
specificity 97.36 
(97.35, 97.37); 
PPV 94.10 (94.08, 
94.12); NPV 96.03 
(96.02, 96.04) 

 

TP 335 

FP 21 

TN 775 

FN 32 

Resident 
radiologists without 
AI 

Sensitivity 84.74 
(84.70, 84.78); 
specificity 97.11 
(97.10, 97.12); 
PPV 93.11 (98.08, 
93.14); NPV 93.24 
(93.22, 93.26) 

 

TP 311 

FP 23 

TN 773 

FN 56 

. . 

Rayvolve        

Bousson 
(2023). 
Age range 
NR; likely 
all or 
mostly 
adults.  

Hand, 
wrist, arm, 
elbow, 
shoulder, 
pelvis, hip, 
leg, knee, 
ankle, foot. 

326/1500 
(26.9%) 

  
AI assisted 
radiology residents 
(4 years of 
residency)  

Sensitivity 92.6 
(90.1-94.6); 
specificity 70.4 
(68.1-73); PPV NR; 
NPV NR 

 

TP 302 

FP 348 

TN 826 

FN 24 
 

   

Fu (2024).#  

Adults 
aged ≥21 

587/2626 
(22.4%) 

Emergency 
physician 
(assisted).  

Emergency 
physician 
(unassisted).  

Eight each of 
emergency 
physicians, non-

Eight each of 
emergency 
physicians, non-

. . 
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Author 
(date). 
Target 
fractures. 

Prev 
(reference 
standard) 

Less experienced 
readers assisted 

Less experienced 
readers 
unassisted 

Mixed or unclear 
staff level 
assisted 

Mixed or unclear 
staff level 
unassisted 

Senior and highly 
experienced staff 
assisted 

Senior and highly 
experienced staff 
unassisted 

years. 
Ankle, 
clavicle, 
elbow, 
forearm, 
humerus, 
hip, knee, 
pelvis, 
shoulder, 
tibia/fibula, 
wrist, 
hand, foot 

Sensitivity 0.938 
(0.915, 0.955); 
specificity 0.853 
(0.828, 0.875); 
PPV NR; NPV NR 

 

TP 551 

FP 300 

TN 1739 

FN 36 

Sensitivity 0.792 
(0.757, 0.824); 
specificity 0.852 
(0.828, 0.874); 
PPV NR; NPV NR 

 

TP 465 

FP 302 

TN 1737 

FN 122 

MSK radiologists, 
and MSK 
radiologists.  

Sensitivity 0.955 
(0.944, 0.964); 
specificity 0.831 
(0.817, 0.845); 
PPV NR; NPV NR 

 

TP 508 

FP 355 

TN 1684 

FN 79 

MSK radiologists, 
and MSK 
radiologists  

Sensitivity 0.865 
(0.848, 0.881); 
specificity 0.826 
(0.812, 0.840); 
PPV NR; NPV NR 

 

TP 561 

FP 345 

TN 1694 

FN 26 

RBFracture       

Bachmann 
(2024). 

Age range 
NR; 70.7% 
adults. 

Appendicul
ar skeleton 

164/334 
(49.1%) 

Assisted A&E 
Trainees.  

Sensitivity 0.83 
(0.81;0.86); 
specificity 0.90 
(0.87;0.92); PPV 
NR; NPV NR 

 

TP 136 

FP 17 

TN 153 

FN 28 

 

Trauma-care 
nurses Sensitivity 
0.70 (0.65;0.75); 
specificity 0.67 
(0.62;0.72) 

 

TP 115 

Unassisted A&E 
Trainees.  

Sensitivity 0.74 
(0.71;0.78); 
specificity 0.87 
(0.84;0.89); PPV 
NR; NPV NR 

 

TP 121 

FP 22 

TN 148 

FN 43 

 

Trauma-care 
nurses Sensitivity 
0.58 (0.53;0.64)  
specificity 0.60 
(0.55;0.65) 

 

TP 95 

2 advanced trauma 
care nurses, 3 
diagnostic 
radiographers, 4 
A&E trainees, 3 
orthopaedic 
specialty registrars, 
3 radiology 
specialty registrars. 
Sensitivity 0.80 
(0.78-0.82); 
specificity 0.85 
(0.84-0.87); PPV 
NR; NPV NR 

 

TP 131 

FP 25 

TN 145 

FN 33 

Unassisted 2 
advanced trauma 
care nurses, 3 
diagnostic 
radiographers, 4 
A&E trainees, 3 
orthopaedic 
specialty registrars, 
3 radiology 
specialty registrars. 
Sensitivity 0.72 
(0.70-0.73); 
specificity 0.81 
(0.80-0.83); PPV 
NR; NPV NR 

 

TP 118 

FP 32 

TN 138 

FN 46 

. . 
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Author 
(date). 
Target 
fractures. 

Prev 
(reference 
standard) 

Less experienced 
readers assisted 

Less experienced 
readers 
unassisted 

Mixed or unclear 
staff level 
assisted 

Mixed or unclear 
staff level 
unassisted 

Senior and highly 
experienced staff 
assisted 

Senior and highly 
experienced staff 
unassisted 

FP 56 

TN 114 

FN 49 

FP 68 

TN 102 

FN 69 

Ruitenbeek 
(S11 
Abstract) 
(2024). 

*************
*************
*************
******** 

*************
*** 

**********************
**********************
**********************
**********************
**********************
*************** 

**********************
**********************
**********************
**********************
**********************
***** 

**********************
**********************
**********************
**********************
**********************
**********************
** 

**********************
**********************
**********************
**********************
**********************
**********************
***** 

. . 

Yogendra 
(S7 
Manuscript
) (NA) 

*************
*************
*************
*********** 

************* * * **********************
**********************
**********************

**********************

**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
*** 

**********************
**********************
**********************

**********************

**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
****** 

**********************

**********************

**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
******** 

**********************
**********************
**********************

**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
**********************
********************** 

TechCare Alert       

Bousson 
(2023). 

Age range 
NR; likely 
all or 

326/1500 
(26.9%) 

. . Assisted radiology 
residents (4 years 
of residency)  

Sensitivity 90.2 
(87.2-92.8); 
specificity 92.5 

. . . 
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Author 
(date). 
Target 
fractures. 

Prev 
(reference 
standard) 

Less experienced 
readers assisted 

Less experienced 
readers 
unassisted 

Mixed or unclear 
staff level 
assisted 

Mixed or unclear 
staff level 
unassisted 

Senior and highly 
experienced staff 
assisted 

Senior and highly 
experienced staff 
unassisted 

mostly 
adults.  

Hand, 
wrist, arm, 
elbow, 
shoulder, 
pelvis, hip, 
leg, knee, 
ankle, foot. 

(91.1-94); PPV NR; 
NPV NR 

 

TP 294 

FP 88 

TN 1086 

FN 32 

Suite 
(2020). 

Adults 
aged 18 – 
98 years; 
mean age 
53.6. 

Lower 
limbs, 
upper 
limbs, ribs 

253/620 
(40.8%) 

Four junior 
radiologists with AI.  

Sensitivity 95; 
specificity 98; PPV 
97; NPV 96 

 

TP 240 

FP 7 

TN 360 

FN 13 

Junior radiologist 
without AI.  

Sensitivity 92; 
specificity 97; PPV 
96; NPV 94 

 

TP 233 

FP 11 

TN 356 

FN 20 

. . Senior radiologist 
with AI.  

Sensitivity 93; 
specificity 98; PPV 
97; NPV 96 

 

TP 235 

FP 7 

TN 360 

FN 18 

Senior radiologist 
without AI.  

Sensitivity 93; 
specificity 98; PPV 
97; NPV 96 

 

TP 235 

FP 7 

TN 360 

FN 18 

Abbreviations: CI, confidence interval; FN, false negative; FP, false positive; MSK, musculoskeletal; NA, not applicable; NPV, negative predictive value; PPV, 
positive predictive value; prev, prevalence; TN, true negative; TP, true positive 

Notes: * calculated based on a crude midpoint between the two readers. ^ data is exam-wise. # data is fracture-wise.  

 

5.1.2. Subgroup results (paediatric participants) 

Four studies reported diagnostic accuracy data in a sample of children and young people: two studies20 25 were conducted only with 

children and young people, and are also included in the previous section, and two studies16 17 reported subgroup data for children 

and young people. These data were in a mixed fracture population only and were only available in mixed/unclear and senior/expert 

reader groupings. The data are summarised in Table 8. 
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One of the studies16 evaluating BoneView reported 100% sensitivity for both assisted and unassisted readers. In other studies,17 20 25 

the use of assisted readings with BoneView and RBFracture improved sensitivity for detecting fractures in children and young people 

but made no difference to specificity. Sensitivity for assisted diagnosis in these studies was high but would nevertheless result in 

more than 10% of positive fractures being missed.  

Table 8: Diagnostic accuracy data for children and young people 

Author 
(date).  

Prevalence 
(reference 
standard) 

Test Mixed or unclear reader 
assisted 

Mixed or unclear reader 
unassisted 

Senior and expert staff 
assisted 

Senior and expert staff 
unassisted 

BoneView       

Nguyen 
(2022). 

Appendicular 
skeleton. 

150/300 
(50%) 

BoneView AI assisted, eight 
readers: 5 radiology 
residents (between the 
2nd and 4th year of 
residency) and 3 expert 
paediatric radiologists (at 
least 7 years of 
experience, including >3 
years specialising in 
paediatric radiology.  

Sensitivity 82.67 [75.65, 
88.36]; specificity 90.33 
[84.43, 94.55]; PPV NR; 
NPV NR 

 

TP 124 

FP 15 

TN 135 

FN 26 

Unassisted eight readers: 
5 radiology residents 
(between the 2nd and 4th 
year of residency) and 3 
expert paediatric 
radiologists (at least 7 
years of experience, 
including >3 years 
specialising in paediatric 
radiology.  

Sensitivity 73.17 [65.33, 
80.07]; specificity 89.58 
[83.55, 93.97]; PPV NR; 
NPV NR 

 

TP 110 

FP 16 

TN 134 

FN 40 

. . 

Oppenheime
r (2023) 

All fractures 
excluding 
cervical 
spine, skull 
and face. 

6/31 (19.4%) BoneView Resident radiologist with 
AI  

Sensitivity 100%; 
specificity 92% 

 

TP 6 

Resident radiologist 
without AI  

Sensitivity 100%; 
specificity 92% 

 

TP 6 

. . 
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Author 
(date).  

Prevalence 
(reference 
standard) 

Test Mixed or unclear reader 
assisted 

Mixed or unclear reader 
unassisted 

Senior and expert staff 
assisted 

Senior and expert staff 
unassisted 

FP 2 

TN 23 

FN 0 

FP 2 

TN 23 

FN 0 

RBFracture       

Bachmann 
(2024). 

Appendicular 
skeleton. 

49/98 (50%)* RBFracture 2 advanced trauma care 
nurses, 3 diagnostic 
radiographers, 4 A&E 
trainees, 3 orthopaedic 
specialty registrars, 3 
radiology specialty 
registrars. 

Sensitivity 0.89 (0.87, 
0.92); specificity  0.80 
(0.77, 0.83) 

 

TP 44 

FP 10 

TN 39 

FN 5 

2 advanced trauma care 
nurses, 3 diagnostic 
radiographers, 4 A&E 
trainees, 3 orthopaedic 
specialty registrars, 3 
radiology specialty 
registrars.  

Sensitivity 0.78 (0.74, 
0.81); specificity 0.77 
(0.74, 0.80) 

 

TP 38 

FP 11 

TN 38 

FN 11 

. . 

***************
***************
***************
******* 

************* ********** *****************************
*****************************

*****************************

*****************************
*****************************
*****************************
*****************************
*****************************
* 

************************ 

*****************************
*****************************

*****************************

*****************************
*****************************
*****************************
*****************************
*****************************
*****************************
*****************************
*****************************
*****************************
** 

************************* 

*****************************

*****************************

*****************************
*****************************
*****************************
*****************************
*****************************
******************** 

************************* 

*****************************

*****************************

*****************************
*****************************
*****************************
*****************************
*****************************
*****************************
*****************************
*****************************
*****************************
****** 

*********************** 

Abbreviations: NPV, negative predictive value; NR, not reported; PPV, positive predictive value 

Notes. *estimated. Prevalence in paediatric population wasn’t reported, but case-control specified 50% fracture rate in overall sample and stratified by age
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5.1.3. Subgroup results (fracture type) 

The EAG identified diagnostic evidence separately for hand/wrist fractures, foot/ankle fractures, 

hip/pelvis fractures and Salter-Harris II fractures. These data are shown in Table 9. 

Data for hand/wrist fractures were available for BoneView, Rayvolve and Smarturgences (Table 

9).  For BoneView, the studies with the most robust sensitivity and specificity data were likely to 

be Duron 2021 and Nguyen 2022 (albeit limited by their retrospective designs). For hand 

fractures only, and a mixed group of readers, Duron 2021 reported sensitivity to be higher with 

BoneView assistance than without (80.2%, SD 11.4 and 59.6%, SD 20.5 respectively). 

Specificity was also higher with BoneView assistance than without (91.0%, SD 6.4 and 84.7%, 

SD 11.0 respectively). Similarly, in Nguyen 2022, for a mixed group of readers interpreting 

hand/wrist X-rays, sensitivity was higher with BoneView assistance than without (87.08 95% CI 

69.79, 96.46 and 68.75 95% CI 49.31, 84.32 respectively) although specificity was similar with 

and without BoneView assistance (88.33 95% CI 71.34, 97.1 and 87.92 95% CI 85.44, 89.48 

respectively). PPV and NPV data were not available for these studies but are provided by 

Cohen 2023 in Table 9. For Rayvolve and Smarturgences one the head-to-head study provided 

subgroup data for hand/wrist fractures. The EAG again highlight the need to interpret these 

results with caution; the study was a retrospective which included the results of the AI in the 

reference standard. 

For foot/ankle fractures, data were also available for BoneView, Rayvolve and Smarturgences 

(Table 9). Again, for Rayvolve and Smarturgences only the limited head-to-head study provided 

these subgroup data. For BoneView, the studies with the most robust sensitivity and specificity 

data were again likely to be Duron 2021 and Nguyen 2022 (albeit limited by their retrospective 

designs). For foot fractures only, and a mixed group of readers, Duron 2021 reported sensitivity 

to be higher with BoneView assistance than without (86.9%, SD 8.3 and 71.8% SD 13.6 

respectively). Specificity was also higher with BoneView assistance than without (92.9% SD 5.8 

and 88.0% SD 9.9 respectively). Similarly, in Nguyen 2022, for a mixed group of readers 

interpreting foot/ankle X-rays, sensitivity was higher with BoneView assistance than without 

(70.83 95% CI 51.47, 85.89 and 70.83 95% CI 51.47, 85.89 respectively). Specificity with 

BoneView assistance was 86.25 95% CI 68.77, 96.02 and without assistance was 85.83 95% CI 

68.26, 95.79. 

Although hip fracture data were available for BoneView and RBFracture (Table 9), the EAG 

noted that none of the pivotal studies reported these data. For BoneView, only Oppenheimer 
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2023 provided subgroup data for hip fractures, and despite being a prospective study, was 

limited by the inclusion of the AI results in the reference standard. Hip fracture data for 

RBFracture was either methodologically limited and unpublished (Bonde and Radiobotics 2021) 

or limited data from a published abstract (Jørgensen 2024, Table 9).  

Only one study (Nguyen 2022; BoneView) provided data for Salter-Harris II fractures in children. 

As previously noted, although this study may provide reasonable sensitivity and specificity 

estimates, there is uncertainty surrounding this due to the retrospective study design. BoneView 

assisted sensitivity, for a mixed group of readers, was given as 92.26, 95% CI 71.29, 99.4 and 

unassisted as 80.95, 95% CI 57.41, 94.78. Specificity was not reported (Table 9).  
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Table 9: Diagnostic accuracy data for different fracture locations 

Author (date).  Prevalence 
(reference 
standard) 

Test Less 
experienced 
readers 
assisted 

Less 
experienced 
readers 
unassisted 

Mixed or 
unclear 
reader 
assisted 

Mixed or 
unclear 
reader 
unassisted 

Senior and 
expert 
readers 
assisted 

Senior and 
experts 
unassisted 

Hand/wrist         

Bousson 
(2023) 

97/314 
(30.9%) 

BoneView   Radiology 
residents (4 
years of 
residency). 
Sensitivity 91.5 
(84.9-95.6); 
specificity 92.1 
(89.2-95.8)  

TP 89 

FP 17 

TN 200 

FN 8 

   

Canoni-Meynet 
(2022)^ 

38/NR BoneView . . Radiologists 
assisted 
sensitivity: 
Hand 89.5% 
(33.9/38) 

 

Radiologists 
unassisted 
sensitivity: 
Hand 68.4% 
(25.9/38) 

 

. . 

Cohen (2023). 
 

247/637 
(38.8%);  

BoneView . . . . Artificial 
combination of 
AI + initial 
radiology 
report. 

Sensitivity 
88%(84–92); 
specificity 
92%(89–95); 
PPV 88% (84–
92); NPV 93% 
(90–95) 

 

TP 218 

FP 29 

Initial radiology 
report.  

Sensitivity 76 
(70, 81); 
specificity 96 
(94, 98); PPV 
93 (90, 97); 
NPV87 (83, 
90) 

 

TP 189 

FP 14 

TN 376 

FN 58 
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Author (date).  Prevalence 
(reference 
standard) 

Test Less 
experienced 
readers 
assisted 

Less 
experienced 
readers 
unassisted 

Mixed or 
unclear 
reader 
assisted 

Mixed or 
unclear 
reader 
unassisted 

Senior and 
expert 
readers 
assisted 

Senior and 
experts 
unassisted 

TN 361 

FN 29 

Duron (2021) Hand only:  
44/108 
(40.7%) 

BoneView   Six radiologists 
and six 
emergency 
physicians 
Sensitivity 
80.2% (SD: 
11.4); 
specificity 
91.0% (SD 
6.4) 

TP 35 

FP 6 

TN 58 

FN 9 

Six radiologists 
and six 
emergency 
physicians 
Sensitivity 
59.6% (SD: 
20.5); 
specificity 
84.7% (SD 
11.0) 

TP 26 

FP 10 

TN 54 

FN 18 

  

Nguyen (2022) 30/60 (50%) BoneView   Average 
across 5 
radiology 
residents and 
3 expert 
paediatric 
radiologists.  

Sensitivity 
87.08 [69.79, 
96.46]; 
specificity 
88.33 [71.34, 
97.1] 

TP 26 

FP 4 

TN 26 

FN 4 

Average 
across 5 
radiology 
residents and 
3 expert 
paediatric 
radiologists.   

Sensitivity 
68.75 [49.31, 
84.32]; 
specificity 
87.92 [85.44, 
89.48] 

TP 21 

FP 4 

TN 26 

FN 9 

  

Oppenheimer 
(2023) 

NR BoneView   Resident 
radiologist. 

Resident 
radiologist 

  



Artificial intelligence software to help detect fractures on X-rays in urgent care: An Early Value Assessment  

Page 71 of 159 

Author (date).  Prevalence 
(reference 
standard) 

Test Less 
experienced 
readers 
assisted 

Less 
experienced 
readers 
unassisted 

Mixed or 
unclear 
reader 
assisted 

Mixed or 
unclear 
reader 
unassisted 

Senior and 
expert 
readers 
assisted 

Senior and 
experts 
unassisted 

Sensitivity 
95.65% 

Sensitivity 
78.26% 

Bousson 
(2023) 

97/314 
(30.9%) 

Rayvolve   Radiology 
residents (4 
years of 
residency). 
Sensitivity 97.8 
(94.5-99); 
specificity 74.6 
(70.1-80.9) 

TP 95 

FP 55 

TN 162 

FN 2 

.   

Bousson 
(2023) 

97/314 
(30.9%) 

TechCare Alert   Radiology 
residents (4 
years of 
residency). 
Sensitivity 93.6 
(88-96.3); 
specificity 91.7 
(89-95.3) 

TP 91 

FP 18 

TN 199 

FN 6 

   

Foot/ankle         

Bousson 
(2023) 

Foot: 56/186 
(30.1%), ankle 
42/232 
(18.1%) 

BoneView   Radiology 
residents (4 
years of 
residency). 
Sensitivity Foot 
98.1% (94.4, 
98.3), Ankle 
89.9% (79.4, 
95.4%) 
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Author (date).  Prevalence 
(reference 
standard) 

Test Less 
experienced 
readers 
assisted 

Less 
experienced 
readers 
unassisted 

Mixed or 
unclear 
reader 
assisted 

Mixed or 
unclear 
reader 
unassisted 

Senior and 
expert 
readers 
assisted 

Senior and 
experts 
unassisted 

Foot 

TP 55 

FP 27 

TN 103 

FN 1 

Ankle 

TP 38 

FP 13 

TN 177 

FN 4 

Canoni-Meynet 
(2022)^ 

 

39/NR 

 

BoneView . . Radiologists 
assisted 
sensitivity: 
Foot 82.9% 
(32.3/39) 

Radiologists 
unassisted 
sensitivity: 
Foot 57.3% 
(22.3/39) 

. . 

Duron (2021) Foot only 
44/84 (52.3%) 

BoneView   Six radiologists 
and six 
emergency 
physicians 
Sensitivity 
86.9% (SD: 
8.3); specificity 
92.9% (SD 
5.8) 

Six radiologists 
and six 
emergency 
physicians 
Sensitivity 
71.8% (SD: 
13.6); 
specificity 
88.0% (SD 
9.9) 

  

Nguyen (2022) 30/60 (50%) BoneView   Average 
across 5 
radiology 
residents and 
3 expert 
paediatric 
radiologists. 
Sensitivity 
70.83 [51.47, 
85.89]; 
specificity 

Average 
across 5 
radiology 
residents and 
3 expert 
paediatric 
radiologists.  
Sensitivity 
53.75 [34.71, 
72.02] 
specificity 
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Author (date).  Prevalence 
(reference 
standard) 

Test Less 
experienced 
readers 
assisted 

Less 
experienced 
readers 
unassisted 

Mixed or 
unclear 
reader 
assisted 

Mixed or 
unclear 
reader 
unassisted 

Senior and 
expert 
readers 
assisted 

Senior and 
experts 
unassisted 

86.25 [68.77, 
96.02] 

TP 21 

FP 4 

TN 26 

FN 9 

85.83 [68.26, 
95.79] 

TP 16 

FP 4 

TN 26 

FN 14 

Oppenheimer 
(2023) 

NR BoneView   Resident 
radiologist. 
Sensitivity 
88.57% 

Resident 
radiologist. 
Sensitivity 
82.86% 

  

Bousson 
(2023) 

Foot: 56/186 
(30.1%), ankle 
42/232 
(18.1%) 

Rayvolve   Radiology 
residents (4 
years of 
residency). 
Sensitivity Foot 
90.8% (83.0, 
95.0), Ankle 
92.1% (82.2, 
96.5) 

Foot 

TP 51 

FP 49 

TN 81 

FN 5 

Ankle 

TP 39 

FP 53 

TN 137 

FN 3 

   

Bousson 
(2023) 

Foot: 56/186 
(30.1%), ankle 
42/232 
(18.1%) 

Smarturgences   Radiology 
residents (4 
years of 
residency). 
Sensitivity Foot 
85.4% (73.1, 
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Author (date).  Prevalence 
(reference 
standard) 

Test Less 
experienced 
readers 
assisted 

Less 
experienced 
readers 
unassisted 

Mixed or 
unclear 
reader 
assisted 

Mixed or 
unclear 
reader 
unassisted 

Senior and 
expert 
readers 
assisted 

Senior and 
experts 
unassisted 

90.2), Ankle 
89.9% (76.0, 
95.5) 

Foot 

TP 48 

FP 12 

TN 118 

FN 8 

Ankle 

TP 38 

FP 15 

TN 175 

FN 4 

Hip         

Oppenheimer 
(2023) 

NR BoneView   Resident 
radiologist. 
Sensitivity 
93.22% 

Resident 
radiologist. 
Sensitivity 
93.22% 

  

Jørgensen (S9 
Abstract) 
(2023). 

107/214 (50%) RBFracture . . Two 
radiographers, 
two medical 
interns and two 
consultants.  

Sensitivity 0.96 
(CI: 0.95; 
0.98); 
specificity 0.86 
(CI: 0.83; 
0.89); PPV 
NR; NPV NR 

TP 103 

FP 15 

TN 92 

FN 4 

Two 
radiographers, 
two medical 
interns and two 
consultants.  

Sensitivity 0.93 
(CI: 0.91;0.95); 
specificity 0.87 
(CI: 0.85; 
0.90); PPV 
NR; NPV NR 

TP 100 

FP 14 

TN 93 

FN 7 

. . 
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Author (date).  Prevalence 
(reference 
standard) 

Test Less 
experienced 
readers 
assisted 

Less 
experienced 
readers 
unassisted 

Mixed or 
unclear 
reader 
assisted 

Mixed or 
unclear 
reader 
unassisted 

Senior and 
expert 
readers 
assisted 

Senior and 
experts 
unassisted 

Radiobotics 
(2021); Bonde 
[unpublished]; 
confidential 
study report.  

Non-obvious 
proximal femur 
fractures, 
including the 
femoral neck 
and head 

*****************
*****************
****** Mixed or 
unclear 
readers 
156/312 (50%) 

RBFracture *****************
*****************
*****************
*****************
*****************
*****************
*****************
*****************
************* 

*****************
*****************
*****************
*****************
*****************
*****************
*****************
*****************
*************** 

Readers with 
>2 years' 
experience 
plus AI. 
Sensitivity*XX
X XXXXXX ;; 
specificity XX 
XXXXXX); 
PPV PPVXXX 
XXX); NPV 
XXXXXXX, 
XXX) 

XXXX 

XXXX 

XXXX 

XXXX28 

Readers with 
>2 years' 
experience 
without AI. 
Sensitivity 
SensitivityXX 
XXXXXXXX;  
specificityXXX 
XXXXXX);); 
PPV XXXXX, 
XXX); NPV 
XXXXXX, 
XXXX 

XXXXX 

XXXX 

XXXXX 

XXXXX 

. . 

Salter-Harris         

Nguyen (2022) 21/NR BoneView   Average 
across 5 
radiology 
residents and 
3 expert 
paediatric 
radiologists.  

Sensitivity 
92.26 [71.29, 
99.4]; 
specificity NR;  

Average 
across 5 
radiology 
residents and 
3 expert 
paediatric 
radiologists.   

Sensitivity 
80.95 [57.41, 
94.78]; 
specificity NR 

  

Notes: ^ fracture-wise data 
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5.1.4. X-ray reading time 

X-ray reading time with and without AI assistance was available for three technologies: 

BoneView (4 studies10 11 13 14), RBFracture (2 studies17 20, though only 1 study20 

**************************************) and Rayvolve (1 study21). The data for all fracture types (i.e. 

not for specific fracture locations) is shown in Table 10. Consistent with the diagnostic accuracy 

data, the EAG reported these data separately according to the perceived level of experience of 

readers, as described in the publications. There were no noticeable differences in reading time 

across the staff groupings, which was surprising given that reading time would be expected to 

be shorter for more senior staff. 

Studies reported that BoneView and Rayvolve were both associated with a reduction in x-ray 

reading time across all staff groups: a reduction of 7 seconds per X-ray between means with 

Rayvolve, while reductions between means ranged from 2.6 to 13 seconds per X-ray with 

BoneView. One study reported that RBFracture 

*********************************************************************************************. However, 

there were large standard deviations around reading time in all studies, which the EAG 

assumed may be due in part to the reading time varying widely according to the type and 

complexity of the fracture/injury. The EAG was also concerned about the reliability of how 

reading time would be measured in studies, and potential differences in the way this was 

defined and recorded between studies. This meant that the EAG had serious concerns about 

the reliability of the data and how to interpret differences between studies.  

The EAG considered that reduced reading time for X-rays may have benefits for service 

resource, though were uncertain to what extent a difference of seconds per X-ray would mean 

to a service. However, the EAG also considered it plausible that increased reading times may 

be acceptable (and preferable) where the additional time translated to increased accuracy. 

Overall, based on the evidence available, the EAG tentatively concluded that BoneView may be 

associated with faster reading X-ray reading time, and that these findings should be considered 

alongside the results for its diagnostic accuracy. 
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Table 10: Reading time for assisted and unassisted X-rays (all fracture types) 

 Less experienced staff Mixed or unclear staff Senior 

 With AI 
mean 
seconds 
per x-ray 
(SD) 

Without 
AI mean 
seconds 
per x-ray 
(SD) 

With AI 
mean 
seconds 
per x-ray 
(SD) 

Without AI mean 
seconds per x-ray 
(SD) 

With AI 
mean 
seconds 
per x-ray 
(SD) 

Without AI mean 
seconds per x-ray 
(SD) 

BoneView 
(Gleamer) 

52.8 (17.7) 
[Duron] 

 

27 (18); 
range 6, 
114  

[Canoni-
Meynet] 

 

44 (43) 

[Guermazi] 

61.5 (24.8) 
[Duron] 

 

39 (34); 
range 4, 
313  

[Canoni-
Meynet] 

 

57 (54) 

[Guermazi] 

57.0 (49.4) 
[Duron] 

 

49.2 (28.5) 

[Guermazi]  

 

29.6 (19.8)  

[Meetschen] 

67.0 (59.3) [Duron] 

 

55.5 (32.6) 

[Guermazi] 

 

32.2 (20.8)  

[Meetschen] 

40 (24);  
range 7, 
163  

[Canoni-
Meynet] 

50 (28); range 10, 
180 [Canoni-
Meynet] 

RBFracture 
(Radiobotics) 

- - ********** 
[Yogendra] 

 

46.4 (NR) 
[Bachmann] 

********) 

[Yogendra] 

********* 
[Yogendra] 

**********[Yogendra] 

Rayvolve 
(AZMed) 

18 (NR)  

[Fu] 

25 (NR)  

[Fu] 

19 (NR)  

[Fu] 

26.1 (NR)  

[Fu] 

- - 

Abbreviations: NR, not reported; SD, standard deviation 

 

5.2. Evidence synthesis 

The EAG investigated whether it was possible to meta-analyse data from the included studies, 

for example to identify a pooled estimate of sensitivity and specificity for a particular technology. 

Having identified significant variation in the diagnostic accuracy results according to reader 

experience, an assessment of the feasibility of meta-analysis was conducted with study results 

grouped according to the level of experience of readers outlined in Section5.1, as well as by 

fracture and technology type. A threshold of six studies within each grouping was considered 

sufficient for meta-analysis. The assessment identified that there were sufficient studies for 

meta-analysis in three categories:  

(1) accuracy of unassisted emergency department and less experienced clinicians in reading x-

rays of any fracture type 

(2) accuracy of unassisted mixed and unclear groups of clinicians in reading x-rays of any 

fracture type, and  
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(3) accuracy of BoneView when assisting a mixed or unclear group of clinicians reading X-rays 

of any fracture type.  

On further investigation, however, there was unexplained heterogeneity in the results of the 

studies within each analysis, and meta-analysis was therefore not considered to be feasible. 

Specifically, plots of accuracy data varied significantly and there was a clear positive correlation 

between logit sensitivity and specificity, which suggested that at least one meaningful covariate 

was not included in the analysis29. Within the EVA, it was not feasible to investigate further the 

potential reasons for heterogeneity in the data, which might have included a meta-regression to 

investigate factors that influence the accuracy of assisted and unassisted diagnosis. 

The EAG took two further steps to synthesise the evidence base: (1) data from the included 

studies within each grouping was summarised using median and ranges, to give a concise 

insight into the variability of results across studies and (2) conducted a narrative synthesis to 

identify patterns in the data that could be used to inform an understanding about the potential 

value of the technology for assisting in the diagnosis of fractures. Synthesised data from the 

included studies is split by fracture type (general/all fracture types and specific fracture 

locations). The EAG advises that the synthesised results provide the median and range of 

sensitivity and specificity values reported in the studies and do not include any variance (e.g. 

95% confidence intervals) around the data reported in the studies. This approach was used for 

simplicity and, due to limitations in the evidence base as a whole, including unexplained 

heterogeneity across studies, the results are presented to provide an insight into potential 

patterns across the dataset, rather than to identify precise diagnostic accuracy data for the 

technologies. 

5.2.1. Diagnostic accuracy of the technologies across studies 

Median sensitivity and specificity for each of the technologies as reported across study 

groupings are presented in this section. For ease of interpretation, the results are also 

presented as the median proportion of missed fractures and false positives. Section 5.2.1.1 

includes the full study population included in the studies, representing multiple fracture types 

within the case mix of each study, as well as results for specific types of fracture subgroups 

(hand/wrist, foot/ankle, hip, and non-obvious fractures). Section 5.2.1.2 includes results specific 

to children and young people. 
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5.2.1.1. Mixed and subgroup fractures  

Results for unassisted readers are shown in Table 11. The EAG noted that the rate of missed 

fractures for clinicians reading X-rays without AI assistance was high across studies, even for 

the senor and expert reader grouping (which was intended to be consistent with consultant-level 

radiologists and reporting radiographers). Across studies, the proportion of fractures missed 

ranged from 20 – 30% and was consistent across reader experience, though more experienced 

readers gave very few false positive decisions. The EAG consulted with two radiographers 

(authors NG and RM) to enquire whether the accuracy of unassisted diagnosis reported in the 

papers would be consistent with their expectations in clinical practice. They advised that the rate 

of missed fractures reported for more experienced staff in the included studies was higher than 

they expected; they expected that consultant radiologists and radiographers would be expected 

to miss very few fractures using X-rays (10% or less), even where readers were unable to 

consult medical notes and the results of other imaging modalities, as was typical in the studies. 

This would also be consistent with guidelines from The Royal College of Radiologists30. The 

EAG sought robust data for the accuracy of X-ray for identifying fractures as used by readers of 

varying experience but was unable to identify this during the assessment. The EAG considered 

this to be a significant uncertainty in the evidence base, since uncertainty surrounding the 

generalisability of the data from the unassisted arms of the studies would also affect the way in 

which the results for the technology reported in the studies should be interpreted.  

Sensitivity and specificity each varied significantly across studies though, in general, unassisted 

readers had higher specificity when identifying fractures than sensitivity. This resulted in a high 

median rate of missed fractures in all fracture analyses, though the rate of false positives was 

also over 10% in most studies in all reader groupings except senior and expert readers. 

The accuracy of unassisted readers for detecting hip fractures was high. Sensitivity for detecting 

hand/wrist and foot/ankle fractures was lower than the mixed fracture analyses, and there was 

variability in specificity for detecting hand/wrist fractures across studies. As might be anticipated, 

there was greater variability in accuracy across studies reporting findings for groups of readers 

with mixed levels of experience, which likely represents the variable case mix in readers 

between studies. There was poorer sensitivity for identifying non-obvious fractures across all 

reader groupings. 
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Table 11: Diagnostic accuracy of unassisted diagnosis (no AI) across studies 

Group (n studies) Median sens 

(range) 

Median spec 

(range) 

Median % missed 

#s (range) 

Median % over 

diagnosis (range) 

All fracture analyses     

Unassisted, any staff 

grouping, all 

fractures (11)10 11 13 

14 16 17 20-22 25 27 

0.72 (0.31, 0.93) 0.89 (0.60, 1.00) 28.1% (7.1, 42.1) 13.3% (1.4, 40.0) 

Unassisted, less 

experienced staff, all 

fractures (7)11 13 14 17 

21 22 27 

0.70 (0.58, 0.92) 0.87 (0.60, 0.97) 30.4% (7.9, 42.1) 12.9% (3.0, 40.0) 

Unassisted, mixed or 

unclear staff, all 

fractures (9)10 13 14 16 

17 20 21 25 27 

0.73 (0.58, 0.87) 0.90 (0.77, 0.97) 26.7% (13.5, 42.0) 10.7% (2.9, 23.0) 

Unassisted, senior 

and expert staff, all 

fractures (3)11 20 22 

***************** ***************** ***************** *************** 

Subgroup fracture types    

Unassisted, mixed or 

unclear staff, 

hand/wrist (3) 13 16 25 

0.69 (0.60, 0.78) 0.88 (0.85, 0.96) 35.5% (30.0, 40.9) 14.5% (13.3, 15.6) 

Unassisted senior 

and expert staff, 

hand/wrist (2)9 11 

0.72 (0.68, 0.76) 0.96 (NA) 23.5% (NA) 3.6% (NA) 

Unassisted mixed or 

unclear staff, 

foot/ankle (3)13 16 25 

0.72 (0.54, 0.83) 0.88 (0.86, 0.88) 37.0% (27.3, 46.7) 12.9% (12.5, 13.3) 

Unassisted senior 

and expert staff, 

foot/ankle (1)11 

0.57 (NA) NR NR NR 

Unassisted less 

experienced staff, 

hip (1)7 

********* ********* ********** ********** 

Unassisted mixed or 

unclear staff, hip 

(3)28  

XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX 

Unassisted less 

experienced staff, 

non-obvious 

fractures (1)24 

0.31 (NA) 0.89 (NA) 68.8% (NA) 10.5% (NA) 

Unassisted mixed or 

unclear staff, non-

obvious fractures 

(1)16 

0.72 (NA) NR 28.5% (NA) 100.0% (NA) 

Unassisted senior or 

expert staff, non-

obvious fractures 

(1)24 

0.56 (NA) 0.89 (NA) 43.8% (NA) 10.5% (NA) 

Abbreviations: NA, not applicable; sens, sensitivity; spec, specificity 
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Note: data are the median and range of sensitivity and specificity values reported in studies or calculated by the EAG 
within each grouping. No variance data around the data are provided, however the specific values should be 
considered to be uncertain. 

 

The results for BoneView as evaluated across studies are shown in Table 12. BoneView 

showed high sensitivity and specificity, irrespective of the reader group. Nevertheless, median 

numbers of missed fractures (all fracture analyses) exceeded 15% for all readers except the 

senior and expert reader group. As with unassisted results, there was some variability in 

sensitivity and specificity values reported across studies, particularly in analyses with mixed and 

unclear readings. In general, BoneView had improved specificity relative to sensitivity, with 

fewer false positives than missed fractures. 

Sensitivity for non-obvious fractures was improved compared to the results for unassisted, 

although the rate of missed fractures and false positives was still high (43.8% and 21.1%) 

respectively, suggesting that services may still wish to use precautionary policies to avoid the 

risk of missed fractures. There was an improvement in sensitivity and specificity for detecting 

hand/wrist and foot/ankle fractures relative to unassisted. There was very little evidence for the 

accuracy of BoneView for identifying hip fractures, which reported high accuracy (both 

sensitivity and specificity), though not conclusively different from some of the unassisted 

evidence. 

Table 12: Diagnostic accuracy of BoneView across studies 

Group (n studies) Median sens 

(range) 

Median spec 

(range) 

Median % missed 

#s (range) 

Median % over 

diagnosis (range) 

All fracture analyses     

BoneView, any staff 

grouping, all 

fractures (7)10 11 13 14 

16 23 25 

0.83 (0.75, 0.91) 0.93 (0.65, 0.99) 17.3% (8.6, 25.0) 7.4% (0.6, 35.0) 

BoneView, less 

experienced staff, all 

fractures (3)11 13 14 

0.79 (0.74, 0.89) 0.97 (0.93, 0.98) 21.3% (11.2, 25.7) 3.3% (1.7, 7.4) 

BoneView, mixed or 

unclear staff, all 

fractures (6)10 13 14 16 

23 25 

0.81 (0.75, 0.91) 0.90 (0.65, 0.97) 19.0%( 8.6, 25.0) 9.8% (2.6, 35.0) 

BoneView,senior or 

expert staff, all 

fractures (1)11 

0.88 (NA) 0.99 (NA) 11.7% (NA) 0.64% (NA) 

Subgroup fracture types    

BoneView, mixed or 

unclear staff, 

0.89 (0.8, 0.96) 0.92 (0.88, 0.95) 13.3% (8.3, 20.5) 9.4% (7.8, 13.3) 
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Group (n studies) Median sens 

(range) 

Median spec 

(range) 

Median % missed 

#s (range) 

Median % over 

diagnosis (range) 

hand/wrist (4)13 16 23 

25 

BoneView senior or 

expert staff, 

hand/wrist (2)9 11 

0.89 (0.88, 0.90) 0.92 (NA) 11.7% (NA) 7.4% (NA) 

BoneView, mixed or 

unclear staff, 

foot/ankle (4)13 16 23 

25 

0.89 (0.71, 0.98) 0.93 (0.80, 0.96) 11.6% (1.8, 30.0) 10.4% (6.8, 20.8) 

BoneView, senior or 

expert staff, 

foot/ankle (1)11 

0.83 (NA) NR NR NR 

BoneView, mixed or 

unclear staff, hip 

(1)16 

0.93 (NA) 0.99 (NA) NR NR 

BoneView, less 

experienced staff, 

non-obvious 

fractures (1)24 

0.56 (NA) 0.79 (NA) 43.8% (NA) 21.1% (NA) 

BoneView, mixed or 

unclear staff, non-

obvious fractures 

(1)16 

0.83 (NA) NR 16.7% 100% 

BoneView, senior or 

expert staff, non-

obvious fractures 

(1)24 

0.81 (NA) 0.89 (NA) 18.8% (NA) 10.5% (NA) 

Abbreviations: NA, not applicable; sens, sensitivity; spec, specificity 

Results for RBFracture as reported across studies are shown in Table 13. The sensitivity of 

RBFracture was broadly comparable to that of BoneView, although there was a trend for 

specificity to be worse, with similar rates of false positives across reader groupings as were 

reported for unassisted readers. This may reflect a prioritisation of the technology threshold 

towards sensitivity; i.e. prioritising the avoidance of missed fractures over avoiding false 

positives. However, rates of missed fractures were still generally high. There were fewer studies 

that evaluated RBFracture, and there was substantial variability in outcomes between studies. 

This creates more uncertainty in the findings. Notably, one study in senior readers had poor 

sensitivity compared to other reader groups; although this study was conducted in a paediatric 

population, which may have influenced the findings (see Section 5.2.1.2). 

Table 13: Diagnostic accuracy of RBFracture across studies 

Group (n studies) Median sens 

(range) 

Median spec 

(range) 

Median % missed 

#s (range) 

Median % over 

diagnosis (range) 

All fracture analyses     
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Group (n studies) Median sens 

(range) 

Median spec 

(range) 

Median % missed 

#s (range) 

Median % over 

diagnosis (range) 

RBFracture, any 

staff group, all 

fractures (3)17 20 27 

***************** ***************** ***************** ***************** 

RBFracture, less 

experienced staff, all 

(2)17 27 

***************** ***************** ****************** ****************** 

RBFracture, mixed, 

all (3)17 20 27 

***************** ***************** ***************** ***************** 

RBfracture, senior, 

all (1)20 

********* ********* ********** ********** 

Subgroup fracture types    

RBFracture, junior, 

hip (1)7  

********* ********* ********* ********* 

RBFracture, mixed, 

hip (2)28  

*********** *******XXXX XXXXXXXXXXX XXXXXXXXXXX 

Abbreviations: NA, not applicable; sens, sensitivity; spec, specificity 

Results for Rayvolve are shown in Table 14. Two studies evaluated Rayvolve, both of which 

reported high sensitivity but poor specificity, particularly for hand/wrist and foot/ankle fractures. 

The EAG considered this was a feature of the technology algorithm, to prioritise missed 

fractures over false positives. Accordingly, specificity was comparable with unassisted 

diagnosis, while sensitivity was generally improved. 

Table 14: Diagnostic accuracy of Rayvolve across studies 

Group (n studies) Median sens 

(range) 

Median spec 

(range) 

Median % missed 

#s (range) 

Median % over 

diagnosis (range) 

Rayvolve all staff all 

fractures (2)21 23 

0.94 (0.93, 0.96) 0.83 (0.70, 0.85) 6.1% (4.4, 7.4) 16.9% (14.7, 29.6) 

Rayvolve junior all 

fractures (1) 21 

0.94 (NA) 0.85 (NA) 6.1% (NA) 14.7% (NA) 

Rayvolve mixed all 

fractures (2) 21 23 

0.94 (0.93, 0.96) 0.77 (0.70, 0.83) 5.9% (4.4, 7.4) 23.3% (16.9, 29.6) 

Rayvolve mixed 

hand (1)23 

0.98 (NA) 0.75 (NA) 2.1% (NA) 25.4% 

Rayvolve mixed foot 

(1)23 

0.91 (0.91, 0.92) 0.67 (0.63, 0.72) 8.0% (7.1, 8.9) 32.8% (27.9, 37.7) 

Abbreviations: NA, not applicable; sens, sensitivity; spec, specificity 



Artificial intelligence software to help detect fractures on X-rays in urgent care: An Early Value 
Assessment  

Page 84 of 159 

Results for TechCare Alert are shown in Table 15. Two studies evaluated TechCare Alert, with 

no crossover in the reader groupings, meaning that data was only available separately or in a 

group reporting results for any reader grouping. Both studies reported high sensitivity and 

specificity for TechCare Alert, with no rates of missed fractures and false positives. Results 

were improved compared to unassisted diagnosis. Results were similarly high for hand/wrist 

and foot/ankle fractures. 

Table 15: Diagnostic accuracy of TechCare Alert across studies 

Group (n studies) Median sens 

(range) 

Median spec 

(range) 

Median % missed 

#s (range) 

Median % over 

diagnosis (range) 

TechCare Alert all 

staff all fractures 

(2)22 23* 

0.93 (0.90, 0.95) 0.98 (0.93, 0.98) 7.1% (5.1, 9.8) 1.9% (1.9, 7.5) 

TechCare Alert 

junior all fractures 

(1)22 

0.95 (NA) 0.98 (NA) 5.1% (NA) 1.9% (NA) 

TechCare Alert 

mixed all fractures 

(1)23 

0.90 (NA) 0.93 (NA) 5.1% (NA) 1.9% (NA) 

TechCare Alert 

senior all fractures 

(1)22 

0.93 (NA) 0.98 (NA) 7.1% 1.9% 

TechCare Alert 

mixed hand (1)23 

0.94 (NA) 0.92 (NA) 6.2% (NA) 8.3% (NA) 

TechCare Alert 

mixed foot (1)23^ 

0.88 (0.85, 0.90) 0.91 (0.90, 0.92) 11.9% (9.5, 14.3) 8.6% (7.9, 9.2) 

*2 studies and 3 data points as 1 study reported 2 staff grades 

5.2.1.2. Subgroup results (paediatric participants) 

Median results across studies reporting diagnostic accuracy data in children and young people 

only are shown in Table 16. No evidence was available in a less experienced reader group only. 

Amongst mixed or unclear experience readers, the assistance of BoneView or RBFracture 

improved median sensitivity for detecting fractures, though made no clear difference to 

specificity. In real terms, this reduced the number of fractures that were missed but did not 

change the number of false positives. One study that reported data for highly experienced staff 

reported poor sensitivity both with and without assistance with RBFracture, which lacked face 

validity. In this group of readers, the assistance of RBFracture improved sensitivity but this 



Artificial intelligence software to help detect fractures on X-rays in urgent care: An Early Value 
Assessment  

Page 85 of 159 

came with a cost to specificity; i.e. there was a meaningful reduction in missed fractures but a 

large increase in false positive diagnoses. 

Table 16: Diagnostic accuracy of assisted and unassisted diagnosis in children and 
young people across studies 

Group (n 
studies) 

Tech Staff Fractur
e 

Median sens 
(range) 

Median spec 
(range) 

Median % 
missed #s 
(range) 

Median % 
over 
diagnosis 
(range) 

No AI 
mixed all 
fractures 
(4)16 17 20 25 

No AI Mixed All 0.78 (0.73, 
1.0) 

0.91 (0.77, 
0.95) 

22.6% (0.0, 
26.7) 

9.3% (5.6, 
22.5) 

BoneView 
mixed all 
fractures 
(2)16 25 

BoneView Mixed All 0.91 (0.83, 
1.0) 

0.91 (0.30, 
0.92) 

8.7% (0, 
17.3) 

9.0% (8.0, 
10.0) 

RBFractur
e mixed all 
fractures 
(2)17 20 

RBFractur
e 

Mixed All ****************
* 

****************
* 

***************
* 

****************
* 

No AI 
senior all 
fractures 
(1)20 

No AI Senio
r 

All ********* ********* ********** ********* 

RBFractur
e senior all 
fractures 
(1)20 

RBFractur
e 

Senio
r 

All ********* ********* ********** ********** 

 

5.3. Conclusions of the clinical, service and technological evidence 

As an emerging technology, the evidence base for the clinical and service value of the 

technology for assisting with fracture diagnosis was expectedly limited. Nevertheless, within the 

context of an EVA, the EAG considered it notable that a total of 16 studies were identified and 

eligible for inclusion in the evidence review. Within the methods of the EVA, the EAG was 

appropriately broad in its inclusion criteria: including conference abstracts, non-peer reviewed 

reports, and manuscripts in preparation, all of which may not typically be considered within a 

NICE evaluation. The EAG also included a variety of study designs, including those with known 

limitations for determining reliable estimates for diagnostic accuracy. As the aims of an EVA 

include identifying an overview of the existing evidence base and key evidence gaps and 

research needs, the inclusion of this evidence was useful for these purposes. However, as 

stressed within the report, these studies are not robust for identifying reliable estimates of 

clinical and service outcomes and should be interpreted with caution. 
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The evidence base as a whole suggested that there is a need for further, high-quality research 

to evaluate the clinical and service outcomes associated with the technology (see Section 9). 

While several of the technologies had been evaluated in few studies available to date, there 

were nine and five included studies evaluating BoneView and RBFracture. For these 

technologies, the EAG considered that the time for a proof-of-concept of the technologies had 

passed, and that these technologies require evaluation within robust comparative study designs. 

These would include diagnostic randomised controlled trials and prospective, robustly sampled 

diagnostic studies, each set within the likely target settings and reader groups that would be 

expected to use the technology in clinical practice. To date, much of the evidence has focussed 

on the accuracy of the technology as a standalone tool (excluded from the evidence review as 

clinical standards would mean that this use would not be possible within the NHS) and as 

assistance to clinicians in radiology departments, including consultant-level staff, who would not 

be expected to require the use of the technology in clinical practice. In addition to the potential 

value of the technology for avoiding missed fractures, stakeholders to the assessment 

highlighted the potential value of the technology for service outcomes, such as time and 

resource savings, but this has not been a focus of any of the available studies to date. All this 

said, however, the EAG noted that the evaluation of the technology will be particularly complex 

in this field, as compared to evaluating diagnostic tools in other indications (see Section 9). In 

the same way as these complexities affected the ease of interpretation of the evidence base in 

this assessment, the EAG expected that some of these complexities would remain for any future 

NICE assessment, even with a more developed evidence base. 

Given the limitations in the included studies, the EAG considered that the precise estimates of 

sensitivity and specificity reported in the studies were uncertain and may have limited 

generalisability to the outcomes that may be seen in clinical practice. However, across the 

evidence identified, there was a trend for the technologies to result in improvements in 

diagnostic sensitivity for identifying fractures relative to unassisted diagnosis, but minimal or no 

improvement in specificity for identifying where fractures were not present. This trend was seen 

across technologies and reader groups. Where accuracy of diagnosis unassisted by the 

technology was already high, such as in the identification of hip fractures and when used by 

senior readers with high accuracy, the additional value of the technology was evidently smaller. 

Generally speaking, the evidence showed that the use of the technology did not result in perfect 

sensitivity and specificity for any reader or any fracture type: while not unexpected, the 

implications of this were that the technology could not be relied upon to identify all fractures or 
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to never result in a false positive diagnosis. Within analyses of non-obvious fractures, where 

arguably the use of the technology could be greatest, the technology generally improved 

sensitivity but was still associated with a large number of false negatives that would require 

handling through additional service use (e.g. imaging, consultant review, precautionary tactics, 

patient recall). While studies mostly reported that use of the technology may reduce reading 

time for each X-ray by several seconds, advice from clinical experts was that this may not be 

preferable, as the technology should – using best practice – be an add-on step of the care 

pathway and thus result in overall increased time for diagnosis within services.  

In conclusion, on the basis of the available evidence base, the EAG considered that there are 

early indications that the use of the technology to aid identification of fractures could have value 

for avoiding missed fractures. Further evidence is needed to evaluate whether this potential 

holds true for the specific ways in which the technology could be used within the NHS, including 

the target fracture types, readers, and the broader care pathway used within each of the target 

settings. There was some evidence that accuracy may vary across the technologies evaluated, 

however due to the lack of evidence for some technologies, and variation in study designs used 

to evaluate each technology, this was uncertain. There is also a need to determine the potential 

implications of the technology for broader service use outcomes, particularly to determine any 

potential trade-off between increased time to diagnosis with other potential time and resource 

savings. Further evidence is also needed to determine the clinical outcomes associated with 

any difference in diagnostic accuracy and service use.  
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6. ECONOMIC EVIDENCE SEARCHES AND SELECTION 

6.1. Evidence search strategy and study selection 

A single search was conducted to identify clinical, technological and economic evidence. Please 

see Section 4.1 for details of the evidence searches.  

6.2. Included and excluded studies 

A total of 1907 records were retrieved by the database searches plus 90 records identified by 

other sources. Of these, 654 records were excluded as duplicates, resulting in 1343 records to 

be screened by title and abstract. From this screening, 75 records were selected for full-text 

retrieval. In total, the review included 4 studies that informed health state costs and utilities: these 

are summarised in Table 17 

A list of studies excluded along with the rationale for exclusion is provided in Appendix C. A 

PRISMA diagram of the search and screen process is provided in Appendix B. 
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Table 17: Key studies selected for the economic model 

Study name, design and 
location 

Intervention(s) and comparator Participants 
and setting 
length of 
follow-up 

Relevant 
outcomes 
and key 
findings 

EAG comments 

Low et al (2021) 
CEA 
Singapore 
https://doi.org/10.1016/j.jval.2
021.06.005 
Published article 

Intervention:  
DECT supplementing SECT  
SECT alone 
 
Comparator: 
MRI 

Participants:  
70-year-old 
female (base 
case) 
Setting:  
ED  
Follow-up: 
Modelled time 
horizon: 
Lifetime 

Primary 
outcome:  

• Utilities 
Secondary 
outcomes: 

• Sensitivit
y, 
Specificit
y 

• Costs 
 

This study was used to 
inform TP,TN, FP and FN 
utilities for hip fracture in the 
economic model 

Judge et al (2016) 
Service evaluation study with 
health economic analysis 
England (UK) 
https://www.ncbi.nlm.nih.gov/
books/NBK385615/ 
Published article 

Intervention:  
Changes to secondary prevention services at 
England hospitals between 2003 and 2012 
(fracture liaison nurse (FLN) care and 
orthogeriatrician (OG) care) 
 
Comparator: 
Usual care (no OG or FLN) 

Participants:  
43 health 
professionals 
working in 
fracture 
prevention 
services in 
secondary 
care Setting:  
Acute 
hospitals in 
England 
Follow-up 
(patient): 2.6 
years from 
index hip 
fracture 
Modelled time 
horizon in 
CEA: Lifetime 

Primary 
outcome:  

• Costs 
Secondary 
outcomes: 

• Utilities 
 

This study was used to 
inform TP,TN, FP and FN 
costs (UK) for hip fracture in 
the economic model 
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Study name, design and 
location 

Intervention(s) and comparator Participants 
and setting 
length of 
follow-up 

Relevant 
outcomes 
and key 
findings 

EAG comments 

Nwankwo et al (2022) 
Trial based CEA 
UK 
https://doi.org/10.1302/2633-
1462.36.BJO-2022-0036 
Published article 

Intervention:  
Removable brace 
 
Comparator: 
Cast 

Participants:  
Patients 
presented to 
hospital with 
ankle fracture 
Setting:  
Acute 
hospital 
Follow-up: 
Modelled time 
horizon: 1 
year 

Primary 
outcome:  

• Utilities 
and costs  
 

This study was used to 
inform TP,TN, FP and FN 
costs and utilities for 
ankle/foot fracture in the 
economic model 

Rua et al (2020) 
Trial based CEA 
UK 
 
Published article 
 

Intervention:  
Immediate MRI 
 
Comparator: 
No further imaging 

Participants 
(n=132) were 
recruited from 
the ED at a 
hospital in 
central 
London. 
Setting:  
ED 
Follow-up: 
Modelled time 
horizon: 6 
months 

Primary 
outcome:  

• Utilities 
and costs  

 

This study was used to 
inform TP,TN, FP and FN 
costs and utilities for 
Hand/wrist fracture in the 
economic model 

 



Artificial intelligence software to help detect fractures on X-rays in urgent care: An Early Value 
Assessment  

Page 91 of 159 

7. EVIDENCE SUBMITTED BY COMPANIES 

Three companies (Gleamer, Milvue and Radiobotics) submitted a RFI response to inform this 

assessment, no RFI was received from AZmed or Qure.ai. As part of the RFI responses, each 

company provided details about evaluations of their technologies that may be relevant for 

consideration within this assessment. These studies were screened using the same methods 

described in the protocol for the assessment, meaning that they were included where they met 

the inclusion criteria for the evidence reviews. This included two unpublished manuscripts, 

currently in preparation, submitted by Radiobotics. Studies that were excluded during screening 

are listed in Appendix C alongside the reasons for exclusion. 

A number of studies described by companies in their RFI responses were identified by the EAG 

as plausibly relevant but there was insufficient information to determine their eligibility for the 

assessment. This included studies where: 

• It was unclear whether the technology was evaluated as a standalone diagnostic tool or 

whether the technology was used in conjunction with clinician judgement. 

• An incomplete citation was provided by the company, and it was not possible to identify the 

publication source. 

• Results were not provided for any of the outcomes in the NICE scope or data were 

presented in an unusable format. 

In all such cases, the EAG submitted a request for clarification from the companies who 

submitted RFIs (Gleamer, Milvue, and Radiobotics).  

Similar uncertainties were identified for several studies identified by the EAG in its evidence 

review, in addition to uncertainties regarding the name of the technology evaluated. Requests 

for clarification were submitted to companies where they were listed as a study sponsor and/or 

where staff from the company were listed as a study sponsor (Gleamer, Milvue, AZmed, and 

Radiobotics).  

Where no clarification response was received by the companies, any studies that did not clearly 

meet the review eligibility criteria, as outlined above, were excluded. 
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8. ECONOMIC EVALUATION 

8.1. Quality appraisal of selected studies 

Consistent with the methods for an EVA, no formal quality appraisal of included studies was 

undertaken. 

8.2. Relevant economic models 

Four papers relevant to the topic area were identified and used as a basis for this assessment, 

specifically providing information on the payoffs (cost and QALYs accrued) from the diagnostic 

outcomes of true and false positive and negative. An overview of these publications is provided 

in Table 17. 

• Rua (2020)31 conducted an assessment for the wrist, evaluating the cost-effectiveness of 

immediate magnetic resonance imaging (MRI) in managing patients with suspected 

scaphoid fractures. The clinical outcomes were sourced from the SMaRT trial, which 

recruited participants with negative initial radiograph findings at the emergency department 

of a central hospital in London.  

• Nwankwo (2022)32 calculated the incremental cost-effectiveness of a removable brace vs 

plaster cast in the management of adult patients with ankle fractures. The outcomes were 

derived from the Ankle Injury Rehabilitation (AIR) trial, a UK-based pragmatic multicentre 

randomized controlled trial (RCT). Eligible patients presented to the hospital with an ankle 

fracture, whether treated operatively or non-operatively, for which the clinician deemed a 

cast a reasonable management option.  

• Low (2021)33 analysed the utilities associated with hip fractures, comparing the costs and 

QALYs of different imaging strategies for diagnosing occult hip fractures. The study 

compared magnetic resonance imaging (MRI) with dual-energy computed tomography 

(DECT), single-energy computed tomography (SECT) supplemented with DECT, and SECT 

alone.  

• Judge (2016)34 evaluated the cost-effectiveness of three models of secondary fracture 

prevention for all patients with hip fractures admitted to NHS hospitals. 

Further details on how the data were used are described from Sections 8.3.4 to 8.3.6. 
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8.3. Economic model 

The EAG developed a de novo model to explore the potential cost-effectiveness of AI-assisted 

diagnosis of fracture compared with unassisted diagnosis of fracture in an urgent care setting 

from the perspective of the NHS and Personal Social Services (PSS).   

Given the heterogeneous nature of the subsequent costs and consequences of different fracture 

locations, the EAG divided the analysis into three separate decision problems, focussing on 

diagnosis and treatment of (1) wrist and hand fractures, (2) ankle and foot, and (3) hip.  These 

three fracture sites were chosen as being both where the EAG considered there to be 

opportunity for greatest benefit from AI-assisted diagnosis and where the costs and 

consequences of the fractures differed substantially, warranting separate modelling. The 

outputs of these were then weighted based on the case mix of a typical urgent care setting to 

estimate the overall change in costs and QALYs accrued within that setting attributable to AI-

assisted diagnosis. Scenario analyses explored additional adjustment for use of AI in 

diagnosing fractures other than the three types explicitly modelled. 

The model described below represents a very rapid overview of the likely costs and 

consequences associated with use of several commercial AI algorithms to assist in the 

diagnosis of fracture, and unassisted diagnosis, in an urgent care setting. The purpose of this 

analysis approach was to explore whether there was a prima facie plausible case for any of the 

technologies to represent value for money for the NHS / taxpayer within the context of a NICE 

EVA. The results should therefore not be used as a definitive estimate of the costs, effects and 

cost-effectiveness of the interventions: a more thorough analysis may lead to different 

conclusions. 

8.3.1. Model structure 

The model structure (Figure 1) comprised a decision tree incorporating the prevalence, 

sensitivity and specificity and cost per diagnosis of a strategy (i.e. AI-assisted or unassisted 

diagnosis). The model structure allowed up to two reviews of a radiograph, although the model 

could be simplified to just a single review (e.g. where input data either represent just a single 

view, or where accuracy data are presented for a double-reading process alone, without 

disaggregation by reader). Allowing for two reviews generated eight terminal nodes, two each 

for four possible states of the world: true positive, true negative, false positive and false 

negative. Payoffs in terms of costs and QALYs were attached to these, drawing on previous 

relevant studies in the literature. The prevalence in this case was defined as the proportion of 
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patients arriving in the urgent care setting with a suspected fracture who have a fracture.  

Payoffs attached to each terminal node are described in Sections 8.3.4 to 8.3.6.  Details on how 

the three models were combined to estimate the overall impact on a ‘typical’ urgent care setting 

are in Section 8.3.7. 

Figure 1: General structure of model 

 

Square = decision node; Circle = chance node; Triangle = terminal node.  D+ = prevalence (i.e. 
probability of a suspected fracture being a true fracture); D- = 1 - D+; T1+ = conditional probability of a 
positive result from first review of X-ray (in branch shown this is sensitivity); T2+ = conditional probability 
of a positive result from second review of X-ray. Costs and QALYs are assigned to terminal nodes. Image 
drawn with SilverDecisions (silverdecisions.pl) 

 

8.3.2. Model assumptions: EAG base case and scenario analyses 

The EAG base case assumed that patients present in an emergency department with a 

suspected fracture, which can be one of three or four types: ankle or foot, wrist or hand, hip or 

‘other’. The base case assumed that AI-assisted diagnosis was limited to ankle/foot, wrist/hand 

and hip fractures alone and so only considered these fracture types. A scenario analysis 

(scenario 8) assumed that the software was used to read radiographs for all suspected fractures 

(including ‘other’). 

As the cost of the emergency department attendance and X-ray (including the grade of staff 

reading the x-ray) was common to all comparators in this analysis, these costs were excluded. 

The difference in cost between different technologies was therefore limited to the cost per scan. 
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This also meant that the cost of reading the scans were directly transferrable to other urgent 

care settings (i.e. UTC and MIU). Sensitivity and specificity of the diagnosis was assumed to 

depend on the grade of staff reading the scan, rather than the setting where it took place. 

The decision problem addressed in the EAG base case was to explore the cost-effectiveness of 

AI-assisted diagnosis using four technologies (BoneView, Rayvolve, RBfracture and TechCare 

Alert) and unassisted diagnosis of fracture in the urgent care setting from the perspective of the 

NHS & PSS. 

8.3.3. Sensitivity and specificity of diagnosis 

Two of the studies identified in the literature review were selected as sources for prevalence 

and sensitivity and specificity of each diagnostic strategy. Whilst all studies had strengths and 

limitations, and a number of potentially relevant studies for the decision model were identified in 

Section 4.2.1, Bousson et al. (2023)23 provided directly comparative data between BoneView, 

Rayvolve and TechCare Alert. Furthermore, data were disaggregated by foot, ankle and hand 

(but not hip).  For the base case, the EAG estimated a mean sensitivity and specificity for foot 

and ankle, assumed hand applied equally to wrist, and assumed the sensitivity and specificity of 

hip fracture diagnosis was equal to that for ‘all fractures’.  Bachmann et al. (2024) compared 

RBFracture assisted diagnosis to unassisted diagnosis in a wide range of fracture types, 

reporting results by ‘mixed’ staff types, ED trainees and trauma care nurses. This was used as 

the source study for RBFracture and unassisted diagnosis, with diagnosis by “A&E trainees” 

considered the closest match to that in Bousson (“radiology residents” with four years’ 

experience).  Due to concerns about quality limitations in the studies, the EAG did not seek to 

adjust estimates for differences in the characteristics of these studies, and a full network meta-

analysis of source studies is recommended in future work. Instead, the EAG explored optimistic 

and pessimistic scenarios in the analysis (see Section 8.3.10). As data were not disaggregated 

by fracture type, the base case assumed the same sensitivity and specificity for all fracture 

types for RBFracture and unassisted diagnosis. 

Source studies estimating the sensitivity and specificity of diagnosis assumed a single read of a 

scan. To ensure as fair a comparison between technologies, the EAG base case assumed only 

a single read. A scenario analysis including a second read of all scans was included as the EAG 

considered that this was a more realistic approach for clinical practice. Base case input data 

(including parametric distributions for the probabilistic analysis) are summarised in Table 18. 
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Table 18: EAG Base case Prevalence, Sensitivity and Specificity 

Fracture 
site 

Prevalence Technology Sensitivity Specificity Source/notes 

Ankle/Foot 0.241  
β(50.38, 158.62) 

   Bousson 2023, 
crude mean of 
ankle and foot 

  BoneView 0.94 
β(196.46, 12.54) 
 

0.86 
β(179.22, 29.78) 
 

Ibid 

  Rayvolve 0.91 
β(191.13, 17.87) 

0.67 
β(140.66, 68.34) 

Ibid 

  TechCare alert 0.88 
β(183.19, 25.81) 

0.91 
β(190.61, 18.39) 

Ibid 

  RB Fracture 0.83 
β(277.22, 56.78) 

0.90 
β(300.60, 33.40) 

Bachmann 2024 
(A&E trainee) 

  Unassisted 0.74 
β(247.16, 86.84) 
 

0.87 
β(290.58, 43.42) 
 

Bachmann 2024 
(A&E trainee) 

Wrist/Hand 0.309 
β(97.00 217.00) 

   Bousson 2023 

  BoneView 0.915 
β(287.31, 26.69) 

0.921  
β(289.19, 24.81) 
 

Ibid 

  Rayvolve 0.98  
β(307.09, 6.91) 

0.75  
β(234.24, 79.76) 

Ibid 

  TechCare alert 0.94 
β(293.90, 20.10) 

0.92 
β (287.94, 26.06) 

Ibid 

  RB Fracture 0.83 
β(277.22, 56.78) 

0.90 
β (300.60, 33.40) 

Bachmann 2024 
(A&E trainee) 

  Unassisted 0.74 
β(247.16, 86.84 

0.87 
β (290.58, 43.42) 

Bachmann 2024 
(A&E trainee) 

Hip 0.217 
β (163.00, 
587.00) 

   Bousson 2023 

  BoneView 0.91 
β (684.75, 65.25) 

0.91 
β (678.75, 71.25) 

Ibid 

  Rayvolve 0.93 
β (694.50, 55.50) 

0.70 
β (528.00, 
222.00) 

Ibid 

  TechCare alert 0.90 
β (676.50, 73.50) 

0.93 
β (693.75, 56.25) 

Ibid 

  RB Fracture 0.83 
β (277.22, 56.78) 

0.90 
β (300.60, 33.40) 

Bachmann 2024 
(A&E trainee) 

  Unassisted 0.74 
β (247.16, 86.84) 

0.87 
β (290.58, 43.42) 

Bachmann 2024 
(A&E trainee) 

Notes: Table reports means and probability distribution and parameters used in analysis. Payoffs for each fracture 
type are described in the following sections (8.3.4 to 8.3.6). 

8.3.4. Foot and Ankle 

Based on the WHO Global Burden of Disease 2019 report,35-37 Chen et al.38 estimated that in 

the UK in 2019, the age standardised incidence of foot fracture was 202.64 per 100,000 (95% 
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uncertainty interval (UI) 142.23 to 278.04). Globally, foot fracture incidence exhibits a bimodal 

distribution by age, with peaks amongst the very elderly (80+) in both men and women and at 

around age 20-24 in males and 10-14 in females. Overall incidence is higher in men than in 

women, although is similar amongst the very elderly. 

Two previous economic studies were identified as potential sources for data for this analysis.  

Nwankwo et al. (2023)32 reported the results of a within-trial cost utility analysis comparing 

removable brace with cast in patients with ankle fractures aged 18+ over 12 months, whilst Baji 

et al. (2023)39 reported the results of a within-trial economic analysis over 12 weeks.  Health 

state utilities measured in Nwankwo et al. at 6 time points showed continuing improvement in 

both arms, suggesting healing continued over this time horizon. In the absence of data to the 

contrary, the foot and ankle fracture model assumed a time horizon of 12 months (i.e. implicitly 

assuming that there will be no difference in cost and outcomes between patients with and 

without fractures after this point). The Baji 2023 study was not considered further as a source 

for extracting payoffs due to its short time horizon. 

In this analysis, patients were assumed to present to urgent care with a suspected fracture 

following a trauma. The two states of the world were for the ankle or foot to be broken, or for it 

to have sustained soft tissue injury alone. In the case of a soft tissue injury, the patient was 

assumed to remain in pain for a short while (e.g. 2 weeks), before returning to normal health. 

The time horizon of the source study was one year. Payoffs in terms of costs and QALYs for the 

four possible outcomes are described below. 

True positives 

Nwankwo (2023)32 reported health state utilities for patients experiencing ankle fractures over 

one year using the EQ-5D-5L instrument, yielding 0.723 QALYs for patients with brace and 

0.720 for those treated with cast. The EAG assumed that 50% of patients would be treated with 

a brace and 50% with a cast. As allocation amongst the trial was almost exactly 50/50, the 

weighted average QALYs accrued was 0.722 (SE 0.06), which was assumed to be the QALYs 

associated with a true positive diagnosis of a foot or ankle fracture (Table 19). 
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Table 19 Calculation of QALYs associated with true positive detection of ankle / foot 
fracture 

 
Brace Cast Total 

n 335 334 669 
QALYs mean 0.723 0.72 0.722 
QALYs SD 0.153 0.149 0.151 
SE 0.008 0.008 0.006 

Source: Nwankwo et al. 2023 

NHS and personal social services costs over 12 months were estimated at £995.54 (SE 

£130.68) in the brace arm and £717.47 (SE £47.70) in the cast arm (2019/20 prices). This 

included ED visits, in-patient days, medication, community health services, outpatient visits, aids 

and adaptations to the home and personal social services (as described in Nwankwo 2023 

supplementary material32). Following confirmation with the author, the ED visits measured in the 

study did not include the index attendance (i.e. initial presentation at ED with a suspected 

fracture). As per the assumptions for calculation of QALYs, the EAG assumed a 50/50 split 

between the two approaches and adjusted the price year with the NHSCII pay and prices index 

yielding a mean cost of £1,837.23 (SE £71.03) in 2022/23 prices (Table 20). 

Table 20 Calculation of costs associated with true positive detection of ankle / foot 
fracture  

12 m NHS+PSS cost Brace Cast Mean 2022/23 prices 
N 335 334 669  
Mean  £995.54   £717.47   £856.71   

SD  £2,391.74   £871.77   £1,632.89  £1,837.23 

SE  £130.67   £47.70   £63.13  £71.03 

Source: Nwankwo et al. 2023 

True Negatives 

A patient who is correctly diagnosed as not having fractured their ankle or foot was assumed to 

incur the cost of the index emergency department consultation and then be discharged (the 

index consultation is excluded from the analysis as is common to all arms).   

To estimate QALYs, patients were assumed to endure the health state equivalent to a fracture 

for two weeks (representing pain and soft tissue bruising from the injury causing them to seek 

assistance), before reverting to the ‘healed’ health state utility for the remainder of the year.  

This led to a mean QALYs accrued over 1 year of 0.796 (Table 21). Utilities and durations were 

entered in the model with QALYs calculated dynamically from sampled values of both. Due to 
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lack of data, correlation between utility at the timepoints was assumed zero (i.e. independent). 

This will overestimate the distribution of sampled values of QALYs (i.e. overestimate uncertainty 

in QALYs). The utility associated with ankle/foot fracture (0.225) was considered to lack face 

validity for a soft tissue injury. Therefore, scenario analysis explored alternative assumptions. 

Table 21 Calculation of QALYs associated with true negative ankle / foot fracture  
 

Brace  Cast  Total   

N 335  334  669   

 mean SD mean SD mean SD SE 

Utility 1 (SD) 0.212  0.310 0.238 0.311 0.225 0.310 0.012 

Duration 1     2   

Utility 2 (SD) 0.812 0.192 0.825 0.171 0.818 0.182 0.007 

Duration 2      50   

QALYs     0.796   

Source: adapted from Nwankwo et al. 2023 

False Positives 

A false positive was assumed to accrue the same cost as a true positive patient and to accrue 

the same QALYs as a true negative. 

False Negatives 

Patients with a fracture who were wrongly diagnosed as not having a fracture were assumed to 

re-present in the ED after two weeks, whereupon additional investigations would be conducted, 

and a correct diagnosis made. Clinical advice to the EAG was that a patient would either 

present to their GP or represent in the ED. A plausible timeframe was considered to be within a 

month. They therefore incur the same costs as true positives (£1837.23, Table 20), plus a cost 

for additional examinations (£149.04, see Section Error! Reference source not found.), 

yielding a total of £1,986.27. To calculate QALYs, the patient was assumed to remain in the 

base health state for two weeks before following the utility trajectory of a true positive patient, 

trimmed to 52 weeks (Table 22). 
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Table 22: Calculation of QALYs associated with false negative ankle / foot fracture 
 

Brace  Cast  Total   

N 335  334  669   

 Mean SD mean SD mean SD SE 

Utility 0  0.212  0.310 0.238 0.311 0.225 0.310 0.012 

Utility 1 0.212  0.310 0.238 0.311 0.225 0.310 0.012 

Timepoint 1     2   

Utility 2 0.534 0.258 0.497 0.272 0.516 0.265 0.010 

Timepoint 2      8   

Utility 3  0.660 0.180 0.647 0.192 0.654 0.186 0.007 

Timepoint 3     12   

Utility 4 0.73 0.177 0.702 0.198 0.716 0.187 0.007 

Timepoint 4     18   

Utility 5 0.778 0.176 0.767 0.193 0.773 0.184 0.007 

Timepoint 5     26   

Utility 6 0.809 0.192 0.821 0.171 0.815 0.182 0.007 

Timepoint 6     52   

QALYs     0.697   

Source: adapted from Nwankwo et al. 2023 

 

Summary of key assumptions  

• Ankle fractures would be healed within 12 months. 

• TN incur the cost of an ED attendance 

• TN accrue QALYs based on 2 week’s baseline utility from Nwankwo et al. followed by the 

remainder of the year at the ‘healed’ utility from Nwankwo et al. 

• FP incur the same cost as TP, same QALYs as TN (2 weeks of pain then back to normal) 

8.3.5. Hand and Wrist 

Six previous economic evaluations17 31 40-43 of interventions for hand and/or wrist fractures were 

identified, of which two were UK-based and therefore of most relevance to this study question 

(Rua et al. 201943 and Rua et al. 202031). Both studies reported the results of the same 

randomised controlled trial of a second line diagnostic of immediate MRI vs no MRI in patients 
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with a suspected scaphoid fracture who had a negative X-ray (i.e. the sum of true and false 

negatives from the initial X-ray). The full cost-utility analysis (Rua et al. 2020) was used as the 

primary source for this analysis. 

As Rua et al. 2020 compared immediate MRI with no MRI (control), the results were presented 

in an aggregate manner, without distinguishing between False Negatives and True Negatives. 

Consequently, the EAG drew on the control arm data to populate the costs and consequences 

of all four terminal nodes. 

Utilities were measured at four timepoints to a time horizon of six months. Resource use 

comprised primary and secondary care contacts including fracture clinic appointments, 

subsequent ED visits, additional diagnostics, surgery, physiotherapy, splits and plaster casts. 

The time horizon for the source study was six months. Payoffs in terms of costs and QALYs for 

the four possible outcomes are described below. 

True Positives 

The EAG assumed utilities for True Positive hand/wrist fractures were one standard deviation 

lower for three months, compared to those reported in Rua et al. 2020. This assumption was 

required as the aggregated results encompassed patients both with and without fractures (Table 

23). Standard errors were assumed as per those reported in Rua et al. 2020. 

Table 23 Health state utilities, Hand/Wrist True Positive 

  Utilities* SD* SE** EAG Base case 

Baseline 0.786 0.158 0.020 0.628 

1 month 0.747 0.238 0.030 0.509 

3 months 0.843 0.227 0.028 0.843 

6 months 0.843 0.211 0.026 0.843 

QALYs for 6 months      0.3463 

Source: * Rua et al 2020; ** EAG calculation 

Abbreviations: QALY, quality-adjusted life-year; SD, standard deviation, SE, standard error 

 

Table 24 Costs for the True positive population 

 Control group 2022/23 prices 

N 65   

Mean £844.75 £986.34 

SE £42.29 £49.37 
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Abbreviations: N, sample; SE, standard error 

True negatives  

The utilities for True Negatives were assumed to be equal to those reported in Rua et al. 2020, 

as 89.6% of patients in the control arm confirmed the absence of fractures. The EAG noted that 

this resulted in a moderate underestimate of QALYs accrued due inclusion of 10.4% of fractures 

(Table 25). 

Table 25 Utilities for True Negative population 

Health state Utility (mean) SD SE 

Baseline 0.786 0.158 0.020 

1 month 0.747 0.238 0.030 

3 months 0.843 0.227 0.028 

 6 months 0.843 0.211 0.026 

QALYs for 6 months 0.393   

Abbreviations: QALY, quality-adjusted life-year; SD, standard deviation, SE, standard error 

Similarly to the utilities, the costs derived from the publication are assumed to align with a True 

Negative population. 

Table 26 Costs for the True negative population 

 Control 
group 

2022/23 prices 

N 65.00   
Mean £559.79 £653.61 

SE £46.95 £54.82 
Abbreviations: N, sample; SD, standard deviation; SE, standard error 

 
False positives 

As for true negatives, the utilities for false positives were assumed to be consistent with those 

reported in the publication, given 89.6% of patients in the control arm confirmed the absence of 

fractures. This may overestimate utility gains as it may be the case that treating false positives 

as positives may result in disutilities. 

Table 27 Utilities for the False positive population 

Health state Utility (mean) SD SE 

Baseline 0.786 0.158 0.020 

1 month 0.747 0.238 0.030 
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Health state Utility (mean) SD SE 

3 months 0.843 0.227 0.028 

 6 months 0.843 0.211 0.026 

QALYs for 6 months 0.393   

Abbreviations: QALY, quality-adjusted life-year; SD, standard deviation, SE, standard error 

The costs associated with True Negatives and False Positives differ, as the latter group is 

treated similarly to those with fractures until a subsequent diagnostic test confirms otherwise. 

Therefore, the base case resource utilisation for this population is assumed to be 10% higher 

than that of the publication. 

Table 28 Costs for the False positive population 

 Control 
group 

2022/23 prices 

N 65.00   
Mean £615.76 £718.97 

SE £51.65 £60.30 

Abbreviations: N, sample size; SE, standard error 

False Negatives 

Regarding QoL, this population closely resembled that of true positives. However, it was 

assumed that patients in this group would be mistreated as negatives for the first two weeks 

following their presentation to urgent care, and therefore would not accrue QoL gains during this 

period. Furthermore, as observed in the true positive population, it was assumed that the utilities 

were lower by one standard deviation for up to three months compared to those reported in the 

publication. Finally, it was assumed that the QoL for patients after three and a half months of 

treatment aligned with the values reported in the publication. 

Table 29 Utilities for the False negative population 

Health state Utility (mean) SD SE 

Baseline 0.628 0.158 0.020 

2 weeks 0.628 0.158 0.020 

6 weeks 0.509 0.238 0.030 

14 weeks 0.843 0.227 0.028 

 26 weeks 0.843 0.211 0.026 

QALYs for 6 months 0.329   

Abbreviations: QALY, quality-adjusted life-year; SD, standard deviation, SE, standard error 
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Differences in resource use from the true positive population include an additional 5% of 

patients likely to undergo wrist surgery, as suggested by Rua (2020), and the inclusion of an 

extra visit to the emergency department. 

Table 30 Costs for the False Negative population 

 Control 
group 

2022/23 prices 

N 65.00   
Mean £904.50 £1,056.10 

SE £53.43 £62.39 

Abbreviations: N, sample size; SE, standard error 

Summary of key assumptions  

• All health states:  

o QoL after 3 months aligned with that of the publication as patients can be 

considered “cured” 

o 6 months is a long enough time horizon to capture all QoL and costs differences 

o The utilities and resource use from Rua et al. 2020 are representative of those of 

True negatives in the UK 

• True positives 

o Utilities for the first 3 months are equal to one standard deviation below those 

reported in Rua et al 2020.  

o Resource use data 

• False positives 

o The utilities of Rua et al. 2020 are representative of this population 

o Resource use associated to this health state is 10% higher than that of True 

negatives 

• False negatives 

o Patients return to urgent care two weeks after the initial presentation following 

which their fracture is correctly diagnosed 

o Following from the above, the utility from Rua et al 2020 at baseline represent 

the utility for those 2 weeks, therefore not assuming disutilities in that period. 
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8.3.6. Hip 

Six economic evaluations for hip fractures were identified. One study was UK based (Judge et 

al 201634) and provided the lifetime costs of hip surgeries for usual care (UC), fracture liaison 

nurse (FLN) care and orthogeriatrician (OG) care models for delivery of secondary fracture 

prevention after index hip fracture. Other studies were conducted across different geographies 

(EU/Singapore/America) of which Low et al 202133, a Singapore based decision model 

comparing different diagnostic strategies for occult hip fractures provided utilities for hip fracture 

by age group and different time periods following the fracture (i.e. immediate, during first year 

and after first year following fracture) was used, as the study design was aligned with the 

decision problem scope and included a detailed model inputs table (along with the associated 

uncertainty parameters).  

The time horizon for the source study was lifetime. Payoffs in terms of costs and utilities for the 

four possible diagnostic outcomes are described below. 

True positives 

Low et al 2021 reported utilities for hip fracture for 65–74-year-old and also at different time 

points following the index hip fracture (immediately following fracture, during first year following 

index hip fracture and beyond first year). Table 31 shows the mean utilities and uncertainty 

distributions inserted into the model based on Low et al.  

Table 31. Hip fracture utilities as per Low et al 2021 
 

Mean Distribution param 1 param 2 Source 

Utility immediate post fracture 
(delay/no surgery) 

0.42 Beta 0.88 1.22 Abimanyi-Ochom44 

Duration (weeks) 2     

Utility during the first year after hip 
fracture (index or first surgery) 

0.59 Beta 2.65 1.8 Keating et al;45 
Jonsson et al46 

Duration (weeks) 50     

Utility after the first year after hip 
fracture (secondary surgeries) 

0.69 Beta 2.36 1.06 Keating et al;45 
Jonsson et al46 

Duration (weeks) 884*     

Note: * Assuming lifetime horizon until 83 years of age (female life expectancy in line with Low et al 2021) 

As the Judge et al. study was UK-based, the EAG considered it to be the preferred source for 

resource use and costs. This study comprised a lifetime Markov model with 1-year cycles that 

simulated the natural history of hip fractures, including progression, major non-hip fractures, and 

discharge to home or a care facility. The study further provided the intervention, hospital, 
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primary care and care home costs by male and female cohorts and by different care models 

namely usual care, FLN and OG care.  

Table 32 below provides the mean discounted costs which is an average across all models of 

care with the assumption that patients were equally distributed across those models of care 

(namely UC, FLN and OG). This approach was taken as the population concerned was over 60 

years typically having fragility related fractures, where FLN and OG care models could also be 

useful in addition to usual care. Standard error was not available; therefore, it was calculated 

from 95% CIs (upper and lower limits) provided (i.e. SE = upper limit – lower limit/3.92). 

Table 32. Mean discounted costs across different models (usual care, FLN and OG) of 
secondary prevention care following hip fracture (2022/23 prices) 

 
Mean SE (calculated using 95% CI) 

Total Male costs £40,628 £749 

Total female costs £52,050 £603 

Average costs £57,471 £834 

Abbreviations: UC, usual care; FLN, fracture liaison nurse; OG, orthogeriatrician; LCI, lower confidence interval, UCI, 
upper confidence interval 

True negatives 

A patient who was correctly diagnosed as not having fractured their hip was assumed to incur 

the cost of an emergency room consultation and then be discharged. They were assumed to be 

experiencing health state equivalent to a post-fracture immediately for two weeks (to account for 

the pain and short-term impact of injury), before reverting to the baseline health utility (0.79 as 

shown in table below). Utilities and durations were used in the model to calculate QALYs 

dynamically from sampled values of both. Due to lack of data, the utility values at different time 

points were assumed to be independent.   

Table 33. Utilities associated with true negatives for hip fractures 
 

Total    

N (observations) 187    

 Mean Distribution Param 1 Param 2 

Immediate utility post fracture 0.42 Beta 0.88 1.22 

Duration (weeks) 2    

Utility 65-74 years 0.79 Beta 2.84 0.76 

Duration (weeks) 934*    

* Assuming lifetime horizon until 83 years of age (female life expectancy in line with Low et al 2021) 

False positives  
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As per Low et al 2021, people with false positive results would be treated as having a hip 

fracture and would undergo surgery similar to true positives. Therefore, their costs would be the 

same as those of true positives. However, as they do not actually have the fracture, their utilities 

would be assumed to be the same as true negatives. The EAG noted that false positives were 

less likely to undergo surgery as the incorrect diagnosis was likely to be spotted before this 

point. The cost estimate for this analysis may therefore be an overestimate. 

False negatives 

Low et al. mentioned that people with false-negative results would be discharged only to return 

to ED within a month for hip surgery, following which they would have the same pathway as true 

positives.  

In terms of costs, the same costs as true positives were incurred, plus costs for additional ED 

attendance and further imaging (CT was assumed), as given in Table 35. 

Table 34. Utilities for False negative hip fractures  
 

Total    

N (observations) 187    

 Mean Distribution Param 1 Param 2 

Immediate utility post fracture  
(applies to delay as well) 

0.42 Beta 0.88 1.22 

Duration (weeks) 4    

Utility first year following surgery 0.59 Beta 2.84 0.76 

Duration (weeks) 48    

Utility beyond first year following surgery 0.69 Beta 2.84 0.76 

Duration (weeks) 884*    

* Assuming lifetime horizon until 83 years of age (female life expectancy in line with Low et al 2021) 

Table 35. Costs for false negative hip fractures 

 Mean SE Distribution Param 1 Param 2 

Average lifetime costs (discounted)  
following hip fracture  
(based on three models of care) 

£57,961 
 

£918 Gamma £3989 £15 

 

Summary of key assumptions 

• Long term costs and consequences for hip fractures were assumed for lifetime horizon 

(one index surgery followed by a second surgery assumed) as per Low et al 2021. 
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• False negatives were assumed to incur the same costs as true positives with additional 

costs of an ED attendance and any additional investigations (1 CT assumed). Time for 

return after discharge was assumed to be 1 month or 4 weeks for false negatives based 

on Low et al 2021. 

• True negatives incurred the cost of an ED attendance and accrue QALYs based on 

immediate post-fracture utility applied for initial 2 weeks, following which they were 

assumed to return to baseline utility for 65-74 years. 

• False positives incurred the same cost as true positives as per Low et al 2021 and same 

QALYs as true negatives. 

8.3.7. Overall impact of AI-assisted diagnosis in an urgent care setting 

Clinical advice to the EAG was that over 2022-23, there were approximately 25.3 million ED 

attendances in England and that fractures typically account for 2-4% of all visits, equating to 

between 506,000 and 1,012,000 attendances. Clinical advice suggested that around 12.5% of 

all fractures are ankle, 7.5% wrist and 12.5% are hip. Data specifically including ankle and foot, 

and wrist and hand were not available. However, the EAG assumed that these proportions 

represented the base case distribution to estimate the overall impact of diagnosis in an urgent 

care setting (Table 36). Scenario analysis included the use of the technology for all fractures. 

These figures were multiplied by the number of patients per year expected in a ‘typical’ ED with 

350-400 attendances per day (total attendances, not just fracture). This equated to 136,875 

attendances per annum, of which 4,106 would be for fracture. Including just the base case 

fracture types, this equated to 1,334 scans per year. 

The EAG’s base case assumed a weighted average cost and outcomes by fracture type. This 

was scaled up to the number of attendances per year to estimate the overall difference in cost 

and QALYs accrued to patients attending the ‘typical’ ED. The three fracture subtypes had 

different time horizons. By merging the three together the assumption was that costs and 

QALYs accrued after 6 months for wrist/hand and 12 months for ankle/foot were identical across 

all arms, in other words complete healing has taken place by this time. If any differences 

remained after these time horizons, then the analysis may underestimate the cost-effectiveness 

of AI-assisted diagnosis (i.e. overestimate the incremental cost-effectiveness, underestimate the 

incremental net health benefit). 
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Table 36: Base case distribution of fracture types 

Fracture type Base case proportions Number of attendances 

Ankle/Foot 38.5% 513 

Wrist/Hand 23% 308 

Hip 38.5% 513 

Total  1334 

 

8.3.8. Cost of diagnosis & additional cost inputs 

Cost of scans 

Cost per scan was extracted from company RFIs where reported. Some companies operated 

volume-based pricing. The EAG’s base case used a cost per scan based on 1,334 scans per 

annum. Base case prices are reported in Error! Reference source not found. and minimum 

and maximum prices are explored in Scenario analyses 3 and 4. Where no pricing data were 

supplied, the EAG inserted a notional cost per scan. The maximum economically justified price 

per scan for each software compared with unassisted diagnosis was also calculated. 

Table 37 Cost per Scan (based on 1334 scans per annum) 

Software Cost per Scan Notes 

BoneView £1.00 Notional cost 

Rayvolve £1.00 Notional cost 

RBfracture XXXX XXXXXXXXXXXXXXX 

TechCare Alert XXXX XXXXXXXXXXXXXXX 

Unassisted £0.00 By definition 

Source: Company RFIs 

Cost of A&E attendance 

As the index presentation at A&E, and the X-ray, was common to all arms, the costs of these 

were excluded from the analysis. However, some cases (e.g. false negatives) were assumed to 

require an additional presentation after a period of time. This was costed on a mean cost of 

£149.04 (NHS Reference Costs 2022-23, code VB11Z: Emergency Medicine, no investigation, 

no significant treatment), and varied by +/-10% in a uniform distribution in the probabilistic 

analysis. 
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8.3.9. Approach to analysis 

As there were multiple comparators, the EAG reports the incremental net health benefit of each 

technology compared with unassisted diagnosis at willingness to pay thresholds of £20,000 and 

£30,000 per QALY gained. This facilitates a fully incremental analysis as the option with the 

highest net health benefit is the option yielding an ICER at or below the threshold after taking 

into account dominated and extended dominated options; incremental comparisons between 

each technology can also be made by comparing the INHB directly. However, given the level of 

uncertainty and the rapid and approximate nature of the modelling for this assessment, the EAG 

cautions against comparing each AI software against each other, instead considering a ‘class 

effect’ for the software as a whole. 

The EAG reports the results for each fracture location individually, followed by an overall 

weighted average for all three fracture subtypes based on case mix. This was multiplied up to 

show the expected impact on cost to the NHS and QALYs accrued to patients vs. unassisted for 

each software. Finally, the maximum economically justified price per scan was calculated as the 

cost per scan associated with an ICER of £20,000 per QALY and £30,000 per QALY. 

8.3.10. Scenario analyses 

The EAG planned to conduct scenario analyses on the use of the technology in different 

settings (e.g. ED vs UTC).  However, the EAG considered that the grade of staff reading the 

radiograph was a more important determinant of the diagnostic accuracy than the setting, and 

any differences in resource use across the settings may largely be equal between all 

comparators. The EAG therefore conducted an optimistic and pessimistic scenario to represent 

different settings as described in Scenarios 1 & 2 below. Other scenarios are described below.  

An additional scenario is in Appendix D. 

Scenarios 1 & 2: optimistic and pessimistic diagnostic accuracy 

The EAG base case for this EVA used a naïve, unadjusted comparison of arms from two 

studies to inform the sensitivity and specificity of each technology. The EAG therefore explored 

an optimistic and pessimistic scenario, based on a review of all source studies (see Table 11 to 

Table 15). The optimistic scenario assumed the lowest sensitivity and specificity for unassisted 

diagnosis and highest for each technology, and the pessimistic the reverse (Table 38).  Where a 

source suggested a lower or upper bound that was inside the EAG base case, the EAG base 

case was used as the estimate at the bound. 
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Table 38 Scenario analyses 1 & 2 

Parameter Base case Scenario 1 
(optimistic) 

Scenario 2 

(pessimistic) 

Ankle/foot BoneView sensitivity 0.94 0.98 0.71 

Ankle/foot BoneView specificity 0.86 0.96 0.80 

Ankle/foot Rayvolve sensitivity 0.91 0.92 0.91 

Ankle/foot Rayvolve specificity 0.67 0.72 0.63 

Ankle/foot TechCare alert sensitivity 0.88 0.92 0.88 

Ankle/foot TechCare alert specificity 0.91 0.91 0.85 

Ankle/foot RB Fracture sensitivity 0.83 **** **** 

Ankle/foot RB Fracture specificity 0.90 **** **** 

Ankle/foot Unassisted sensitivity 0.74 0.54 0.83 

Ankle/foot Unassisted specificity 0.87 0.86 0.88 

Wrist/hand BoneView sensitivity 0.915 0.96 0.80 

Wrist/hand BoneView specificity 0.921 0.95 0.88 

Wrist/hand Rayvolve sensitivity 0.98 0.98 0.93 

Wrist/hand Rayvolve specificity 0.75 0.85 0.7 

Wrist/hand TechCare alert sensitivity 0.94 0.95 0.90 

Wrist/hand TechCare alert specificity 0.92 0.98 0.92 

Wrist/hand RB Fracture sensitivity 0.83 **** **** 

Wrist/hand RB Fracture specificity 0.90 **** **** 

Wrist/hand Unassisted sensitivity 0.74 0.60 0.78 

Wrist/hand Unassisted specificity 0.87 0.60 0.78 

Hip BoneView sensitivity 0.91 0.93 0.89 

Hip BoneView specificity 0.91 0.99 0.83 

Hip Rayvolve sensitivity 0.93 0.96 0.93 

Hip Rayvolve specificity 0.70 0.85 0.70 

Hip TechCare alert sensitivity 0.90 0.98 0.90 

Hip TechCare alert specificity 0.93 0.95 0.93 

Hip RB Fracture sensitivity 0.83 XXX *** 

Hip RB Fracture specificity 0.90 XXX **** 

Hip Unassisted sensitivity 0.74 0.74 XXX 

Hip Unassisted specificity 0.87 XXX XXX 

Source: extracted from Table 11 to Table 16 

Scenarios 3 & 4: cost per scan 
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Several companies price their software on the basis of annual volume. These scenarios 

explored a low volume (i.e. highest cost per scan) and high volume (lowest cost per scan) 

analysis for those technologies pricing based on volume (XXXXXXXXXXXXXXXX, Table 39). 

Table 39: Scenarios 3&4 - cost per scan 

Intervention Base Case Low volume/high cost High volume/low 
cost 

XXXXXXX XXXX XXXX XXXX 

XXXXXXXX XXXX XXXX XXXX 

 

Scenarios 5 & 6: Reduced time to interpret radiograph 

Data on reduced reading time for X-rays are reported in Section 5.1.4 These studies generally 

reported time savings of between 7 and 13 seconds per scan assisted by the technology. For 

the purpose of this scenario analysis, the EAG assumed a notional 10 second reduction per X-

ray and subtracted the cost of this from the cost of the AI-assisted strategies under two 

scenarios: scenario 5 assumed the radiograph was read by a junior / trainee radiologist and 

scenario 6 by a consultant level radiologist (Table 40). The EAG noted advice from clinical 

experts that best practice use of the technology may lead to increases in reading time, though 

considered the lack of evidence for this, the EAG did not explore this scenario in the analysis. 

Table 40: Scenarios 5&6 - reduced time to read X-ray 

Scenario Staff grade Unit cost (per 
hour) 

Time reduction 
per radiograph 

Cost 
reduction 
per 
radiograph 

Source / 
Notes 

Scenario 5 Registrar £50 10 seconds 13.9p PSSRU 
2023, P95 

Scenario 6 Consultant: 
medical 

£109 10 seconds 30.3p ibid 

 

Scenario 7: Health state utility for negative ankle & foot fractures. 

The base case analysis for an ankle or foot fracture assumed that a patient without a fracture 

experienced an equal health state utility to a fracture, but only for two weeks before resolving 

(i.e. assuming a soft tissue injury which healed in two weeks). However, the EAG considered 

the health state utility to be lower than was plausible for such an injury and therefore lacking in 
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face validity. The EAG therefore explored a scenario with a utility of 0.727, equivalent to EQ5D 

utility for a person with some mobility problems and some pain (overall profile 21121). 

Scenario 8: Use of technology in all fractures. 

The EAG base case assumed that the technology was only used in the three types of fractures 

considered in the analysis. However, the EAG considered it plausible that the software would be 

enabled for other fracture types. The EAG therefore conducted a scenario representing an 

additional cost associated with those other uses but assumed that zero benefit was gained from 

those reads. This therefore represents a pessimistic scenario of the broader use of the 

technology (Table 41). 

Table 41: Casemix under scenario 8 

 Casemix  Attendances  

Fracture type Base case Scenario Base case Scenario 

Ankle/foot 38.5% 12.5% 513 513 

Wrist/hand 23% 7.5% 308 308 

Hip 38.5% 12.5% 513 513 

Other  67.5% 0 2772 

Source: adapted from expert opinion 

Scenario 9: Second read of all scans 

The EAG base case used data on diagnostic accuracy as extracted from the two source 

studies. These comprised a single interpretation of the X-ray, although a second review of 

diagnoses was considered to be more reflective of real practice. To represent this, the EAG 

conducted a scenario where all scans were read a second time. It was assumed that the 

diagnostic accuracy of the second reader was the same as the first.  As this was common to all 

arms, the cost was excluded from analysis. 

8.4. Results from the economic modelling 

8.4.1. Base case results 

Overall, the majority of the AI-assisted diagnostic algorithms were associated with a positive 

incremental net health benefit compared with unassisted diagnosis at £20,000 and £30,000 

thresholds, although 95% credibility intervals in most cases crossed zero, both for all fracture 

types and when considered together (Table 42 to Table 47). As noted previously, due to data 

limitations, the EAG advises against comparisons between the individual algorithms. The 
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minimum economically justified prices were somewhat above the proposed per-scan prices 

proposed by the companies. However, the EAG also cautions against use of these data to 

inform pricing decisions, as the modelling was only considered suitable for an indicative ‘signal’ 

of cost-effectiveness. More detailed analysis would be required to estimate a suitable maximum 

price per scan, along with fully incremental analysis to compare the benefits and costs of all the 

algorithms against one another. 

Table 42: Base Case: Ankle/foot 

intervention cost cost_95CI QALYs QALYs_95CI INHB20k INHB20k_95CI INHB30k INHB30k_95CI 

BoneView 637.52 518.33, 765.48 0.786 0.773, 0.798 0.001 -0.003, 0.006 0.002 -0.001, 0.004 

Rayvolve 902.89 772.76, 1042.83 0.786 0.773, 0.798 -0.012 -0.018, -0.007 -0.008 -0.011, -0.004 

RBfracture XXXX XXXXXXXXXX 0.785 0.772, 0.797 XXXX XXXXX XXXX XXXXXXX 

TechCare Alert XXXX XXXXXXXXXX 0.785 0.773, 0.798 XXXX XXXXX XXXX XXXXXXXXX 

Unassisted 633.74 519.00, 757.60 0.784 0.772, 0.797 0.000 0.000, 0.000 0.000 0.000, 0.000 

Abbreviations: CI, confidence interval; INHB20k/INHB30k, incremental health benefit at willingness to pay threshold 
of £20/30k (versus unassisted); QALY, Quality Adjusted Life Year 

Table 43: Base Case: Wrist/Hand 

Intervention cost cost_95CI QALYs QALYs_95CI INHB20k INHB20k_95CI INHB30k INHB30k_95CI 

BoneView 763.07 686.87, 841.19 0.398 0.386, 0.409 0.001 -0.001, 0.002 0.001 -0.001, 0.002 

Rayvolve 769.61 700.57, 838.68 0.398 0.386, 0.409 0.001 -0.002, 0.002 0.001 -0.002, 0.002 

RBfracture XXXXX XXXXXXXXXX 0.397 0.386, 0.409 XXXXX XXXXXXXXX XXXXX XXXXXXXXX 

TechCare Alert XXXXX XXXXXXXXXX 0.398 0.386, 0.409 XXXXX XXXXXXXXX XXXXX XXXXXXXXX 

Unassisted 768.11 695.97, 842.02 0.397 0.386, 0.408 0.000 0.000, 0.000 0.000 0.000, 0.000 

Abbreviations: CI, confidence interval; INHB20k/INHB30k, incremental health benefit at willingness to pay threshold 
of £20/30k (versus unassisted); QALY, Quality Adjusted Life Year 

Table 44: Base Case: Hip 

intervention cost cost_95CI QALYs QALYs_95CI INHB20k INHB20k_95CI INHB30k INHB30k_95
CI 

BoneView 16,761.80 14,993.44, 
18,640.24 

10.431 5.660, 13.075 0.08 -0.01, 0.179 0.054 -0.006, 
0.119 

Rayvolve 25,806.08 23,809.65, 
27,845.00 

10.431 5.660, 13.075 -0.372 -0.481, -0.259 -0.248 -0.321,  
-0.172 

RBfracture XXXXXX XXXXXXXX
XXXXX 

10.431 5.659, 13.075 XXXX XXXXXXXXX XXXX XXXXXXX
XX 

TechCare Alert XXXXXX XXXXXXXX
XXXXX 

10.431 5.660, 13.075 XXXX XXXXXXXXX XXXX XXXXXXX
XX 

Unassisted 18,363.21 16,179.10, 
20,612.27 

10.431 5.659, 13.075 0.000 0.000, 0.000 0.000 0.000, 
0.000 
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Abbreviations: CI, confidence interval; INHB20k/INHB30k, incremental health benefit at willingness to pay threshold 
of £20/30k (versus unassisted); QALY, Quality Adjusted Life Year 

Table 45: Base Case: Overall 

interventions cost cost_95CI QALYs QALYs_95CI INHB20k INHB20k_95CI INHB30k INHB30k_95CI 

BoneView 6870.15 5078.67, 
8825.15 

4.408 2.344, 6.187 0.032 -0.003, 0.072 0.021 -0.002, 0.048 

Rayvolve 10453.83 7826.39, 
13261.71 

4.408 2.344, 6.187 -0.148 -0.207, -0.096 -0.098 -0.137, -0.064 

RBfracture XXXXXX XXXXXXXX
XXXXX 

4.407 2.344, 6.187 XXXX XXXXXXXXX XXXX XXXXXXXXX 

TechCare Alert XXXXXX XXXXXXXX
XXXXX 

4.408 2.344, 6.187 XXXX XXXXXXXXX XXXX XXXXXXXXX 

Unassisted 7485.85 5514.65, 
9636.13 

4.407 2.343, 6.186 0.000 0.000, 0.000 0.000 0.000, 0.000 

Abbreviations: CI, confidence interval; INHB20k/INHB30k, incremental health benefit at willingness to pay threshold 
of £20/30k (versus unassisted); QALY, Quality Adjusted Life Year 

 

Table 46: Population level results (point estimates, based on 1334 patients scanned) 

interventions Cost vs unassisted QALYs vs Unassisted INHB20k INHB30k 

BoneView -821,343.80 1.334 42.69 28.01 

Rayvolve 3,959,285.32 1.334 -197.43 -130.73 

RBfracture XXXXXXXX 0 XXXXX XXXXX 

TechCare Alert XXXXXXXXX 1.334 XXXXX XXXX 

Unassisted 0.00 0 0 0 

Abbreviations: INHB20k/INHB30k, incremental health benefit at willingness to pay threshold of £20/30k; QALY, 
Quality Adjusted Life Year 

 

Table 47: Base Case Maximum Economically Justified Price 
 

BoneView Rayvolve RBfracture TechCare Alert Unassisted 
combined_ejp20K 634.15 -2,952.34 XXXXXXX XXXXXXX 0 

combined_ejp30K 642.60 -2,944.27 XXXXXXX XXXXXXX 0 

Abbreviations: ejp, economically justifiable price 

8.4.2. Scenario analysis results 

Results are summarised in Table 48.  Scenario analyses suggested that the decision was 

sensitive to the optimistic and pessimistic scenarios (scenarios 1 & 2), implying there was much 

uncertainty in the data. However, the results suggested that there was the potential for AI-

assisted diagnosis of fracture to be cost-effective. Results were broadly insensitive to the low 

and high pricing scenarios for XXXXXXXXXXXXXXXXX (scenarios 3 & 4), when accounting for 

time taken to interpret X-rays (scenarios 5 & 6), adjusting for the health state utility of negative 
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ankle and foot fractures (scenario 7), use across all fractures rather than just the three locations 

analyses (scenario 8), and whether scans are read once or twice (scenario 9). 

Whilst the scenario analyses of this EVA suggested that the only parameters to which the 

results were sensitive was the sensitivity and specificity of the diagnostic scans, the EAG 

advises caution in interpretation as more detailed modelling and analysis may lead to differing 

conclusions. 
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Table 48 Scenario analysis results (overall fractures) 

Scenario intervention cost cost_95CI QALYs QALYs_95CI INHB20k INHB20k_95
CI 

INHB30k INHB30k_95
CI 

1 BoneView XXXXX XXXXXX, 
XXXXXXX 

4.414 2.360, 6.191 XXXXX XXXXXXXXX XXXXX XXXXXXXXX 

Optimistic Rayvolve XXXXX XXXXXX, 
XXXXXXX 

4.414 2.360, 6.191 XXXXX XXXX  

XXXX 

XXXXX XXXXXX, 
XXXXX 

 RBfracture XXXXX XXXXXX, 
XXXXXXX 

4.414 2.359, 6.191 XXXXX XXXXXXXXX XXXXX XXXXXXXXX 

 TechCare 
Alert 

XXXXX XXXXXX, 
XXXXXXX 

4.414 2.360, 6.191 XXXXX XXXXXXXXX XXXXX XXXXXXXXX 

 Unassisted XXXXX XXXXXX, 
XXXXXXX 

4.412 2.359, 6.189 XXXXX XX XXXXX XX 

2 BoneView XXXXX XXXXXX, 
XXXXXXX 

4.400 2.330, 6.208 XXXXX XXXX  

XXXX 

XXXXX XXXXXX, 
XXXXX 

Pessimistic Rayvolve XXXXX XXXXXX, 
XXXXXXX 

4.401 2.331, 6.208 XXXXX XXXX  

XXXX 

XXXXX XXXXXX, 
XXXXX 

 RBfracture XXXXX XXXXXX, 
XXXXXXX 

4.400 2.330, 6.207 XXXXX XXXX  

XXXX 

XXXXX XXXXXX, 
XXXXX 

 TechCare 
Alert 

XXXXX XXXXXX, 
XXXXXXX 

4.401 2.330, 6.208 XXXXX XXXX  

XXXX 

XXXXX XXXXXX, 
XXXXX 

 Unassisted XXXXX XXXXXX, 
XXXXXXX 

4.400 2.330, 6.208 X XX X XX 

3 BoneView 6,887.39 5,122.73, 
8,840.88 

4.423 2.411, 6.193 0.032 -0.004, 0.072 0.021 -0.002, 0.048 

High cost Rayvolve 10,479.79 7,871.55, 
13,236.42 

4.423 2.411, 6.193 -0.148 -0.206, -
0.096 

-0.098 -0.137, -
0.064 

 RBfracture XXXXX XXXXXX, 
XXXXXXX 

4.422 2.411, 6.192 XXXXX XXXXXXXXX XXXXX XXXXXXXXX 

 TechCare 
Alert 

XXXXX XXXXXX, 
XXXXXXX 

4.423 2.411, 6.193 XXXXX XXXXXXXXX XXXXX XXXXXXXXX 
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Scenario intervention cost cost_95CI QALYs QALYs_95CI INHB20k INHB20k_95
CI 

INHB30k INHB30k_95
CI 

 Unassisted 7,504.71 5,546.24, 
9,674.39 

4.422 2.411, 6.192 0 0, 0 0 0, 0 

4 BoneView 6,877.47 5,109.63, 
8,888.22 

4.415 2.391, 6.202 0.032 -0.004, 0.071 0.021 -0.002, 0.048 

Low cost Rayvolve 10,464.16 7,879.47, 
13,280.19 

4.415 2.391, 6.202 -0.148 -0.207,  

-0.097 

-0.098 -0.138, -
0.064 

 RBfracture XXXXX XXXXXX, 
XXXXXXX 

4.414 2.391, 6.201 XXXX XXXXXXXXX XXXXX XXXXXXXXX 

 TechCare 
Alert 

XXXXX XXXXXX, 
XXXXXXX 

4.415 2.391, 6.202 XXXX XXXXXXXXX XXXXX XXXXXXXXX 

 Unassisted 7,492.89 5,542.73, 
9,712.71 

4.414 2.390, 6.201 0 0, 0 0 0, 0 

5 BoneView 

6,896.95 

5,069.79, 
8,933.91 

4.427 2.370, 6.223 0.032 -0.004, 0.071 0.021 -0.002, 0.047 

Time to 
interpret – 
junior 

Rayvolve 

10,489.87 

7,824.94, 
13,338.37 

4.427 2.369, 6.222 -0.148 -0.207,  

-0.096 

-0.098 -0.138, -
0.064 

 RBfracture XXXXX XXXXXX, 
XXXXXXX 

4.427 2.369, 6.222 XXXX XXXXXXXXX XXXXX XXXXXXXXX 

 TechCare 
Alert 

XXXXX XXXXXX, 
XXXXXXX 

4.427 2.369, 6.222 XXXX XXXXXXXXX XXXXX XXXXXXXXX 

 Unassisted 
7,513.7 

5,518.44, 
9,725.16 

4.426 2.369, 6.221 0 0, 0 0 0, 0 

6 BoneView 6,872.48 5,091.02, 
8,851.83 

4.404 2.350, 6.194 0.031 -0.004, 0.072 0.021 -0.002, 0.048 

Time to 
interpret - 
senior 

Rayvolve 10,456.17 7,833.18, 
13,288.60 

4.404 2.350, 6.194 -0.148 -0.208,  

-0.094 

-0.098 -0.138, -
0.063 

 RBfracture XXXXX XXXXXX, 
XXXXXXX 

4.403 2.350, 6.193 XXXX XXXXXXXXX XXXXX XXXXXXXXX 

 TechCare 
Alert 

XXXXX XXXXXX, 
XXXXXXX 

4.404 2.350, 6.194 XXXX XXXXXXXXX XXXXX XXXXXXXXX 



Artificial intelligence software to help detect fractures on X-rays in urgent care: An Early Value Assessment  

Page 119 of 159 

Scenario intervention cost cost_95CI QALYs QALYs_95CI INHB20k INHB20k_95
CI 

INHB30k INHB30k_95
CI 

 Unassisted 7,482.96 5,522.09, 
9,663.16 

4.403 2.350, 6.193 0 0, 0 0 0, 0 

7 BoneView 6,864.76 5,042.82, 
8,809.68 

4.410 2.331, 6.186 0.031 -0.004, 0.071 0.021 -0.002, 0.048 

Angle and 
foot 
negatives 
utility 

Rayvolve 10,448.15 7,766.12, 
13,280.91 

4.410 2.331, 6.186 -0.148 -0.208,  

-0.095 

-0.098 -0.138, -
0.063 

 RBfracture XXXXX XXXXXX,XXXXX 4.409 2.331, 6.186 XXXXXX XXXXXXXXX XXXXX XXXXXXXXX 

 TechCare 
Alert 

XXXXX XXXXXX, 
XXXXXXX 

4.410 2.331, 6.186 XXXX XXXXXXXXX XXXXX XXXXXXXXX 

 Unassisted 7,474.09 5,447.64, 
9,606.19 

4.409 2.331, 6.185 0 0, 0 0 0, 0 

8 BoneView 2,256.76 0.01, 15,714.09 1.456 0.000, 
10.395 

0.010 -0.001, 0.084 0.007 0.000, 0.056 

Use in all 
fractures 

Rayvolve 3,438.05 0.01, 23,809.06 1.456 0.000, 
10.395 

-0.049 -0.328, 0.000 -0.032 -0.218, 0.000 

 RBfracture XXXXX XXXXXXXXXXX 1.455 0.000, 
10.394 

XXXX XXXXXXXXX XXXXX XXXXXXXXX 

 TechCare 
Alert 

XXXXX XXXXXXXXXXX 1.456 0.000, 
10.395 

XXXX XXXXXXXXX XXXXX XXXXXXXXX 

 Unassisted 2,456.79 0, 16,893.89 1.455 0.000, 
10.394 

0 0, 0 0 0, 0 

9 BoneView 6,879.57 5,105.45, 
8,881.25 

4.416 2.360, 6.199 0.031 -0.004, 0.072 0.021 -0.003, 0.048 

Second 
read 

Rayvolve 10,464.26 7,840.36, 
13,330.71 

4.416 2.360, 6.199 -0.148 -0.207,  

-0.096 

-0.098 -0.138, -
0.064 

 RBfracture XXXXX XXXXXX, 
XXXXXXX 

4.415 2.359, 6.199 XXXX XXXXXXXXX XXXXX XXXXXXXXX 

 TechCare 
Alert 

XXXXX XXXXXX, 
XXXXXXX 

4.415 2.360, 6.199 XXXX XXXXXXXXX XXXXX XXXXXXXXX 
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Scenario intervention cost cost_95CI QALYs QALYs_95CI INHB20k INHB20k_95
CI 

INHB30k INHB30k_95
CI 

 Unassisted 7,489.17 5,504.42, 
9,688.56 

4.415 2.359, 6.198 0 0, 0 0 0, 0 

Abbreviations: CI, confidence interval; INHB20k/30k, incremental health benefit at willingness to pay threshold of £20k/30k.
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8.5. Summary and interpretation of the economic evidence 

The early modelling for this EVA suggested that, at the proposed prices charged by the 

companies, AI assisted diagnosis had the potential to represent a value for money investment 

for the NHS at typical thresholds of £20,000 to £30,000 per QALY gained. However, this 

conclusion was considered highly uncertain at the present time. The EAG noted that the cost-

effectiveness appeared to be driven by reductions in costs rather than a gain in QALYs. The 

EAG cautions against using this analysis to compare one AI algorithm against another due to 

data limitations, and instead to consider whether AI-assisted diagnosis as a class would likely 

be of value. For example, the optimistic and pessimistic scenarios may not fully capture 

uncertainty and therefore may bias in favour or against technologies with only one source study. 

Future work, however, will require comparison of one algorithm against another to ensure the 

varying diagnostic accuracy of the algorithms is matched to their prices in a fully incremental 

analysis. 

Scenario analysis concluded that the only parameters to which the decision was sensitive were 

the diagnostic accuracy of the algorithms and unassisted diagnosis, with the ‘optimistic’ and 

‘pessimistic’ scenarios generating diverging conclusions. Other scenarios, including cost and 

time savings from AI-assisted diagnosis, low and high price-per-scan scenarios, and varying 

assumptions around health state utilities, use of AI in all fractures and including a second read 

of all X-rays did not materially affect the results. 
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9. EVIDENCE GAPS AND RESEARCH RECOMMENDATIONS 

The EAG conducted a broad evidence review to identify the existing evidence base for the use 

of the technology to assist with the identification of fractures in emergency care settings. The 

EAG identified: 

• 16 studies that evaluated the diagnostic accuracy of the technology 

• 7 studies that reported X-ray reading time 

• 0 studies that reported other service outcomes 

• 0 studies that reported clinical outcomes for people with suspected fractures 

• 0 economic evaluations of the technology.  

With respect to the specific technologies eligible for consideration, the majority of the evidence 

evaluated BoneView (9 studies) and RBFracture (5 studies), with 2 studies available for both 

Rayvolve and TechCare Alert, and 0 studies available for qMSK. The availability of a head-to-

head comparison23 of three of the technologies this early in development of the technologies 

was notable, although this study lacked the availability of an unassisted arm for comparison 

purposes. As discussed throughout the report, the evidence base to date was limited in quality, 

with various risks of bias to the results as well as concerns about the generalisability of the 

evidence to clinical settings. Due to these issues, the EAG was unable to draw firm conclusions 

about the potential value of the technology, or identify reliable patterns in the results, such as 

according to reader experience, case mix, fracture subgroup, or population.  

During the assessment, including during interpretation of the evidence base and feedback from 

clinicians and stakeholders to the assessment, the EAG identified complexities in developing 

evidence to evaluate interventions for use in people with suspected fractures and the services 

that treat them. One of the most significant of these considerations was that the target 

population of people with suspected fractures is highly heterogeneous, comprising of people 

with a broad range of demographics, type, mechanism and location of injury, and broader health 

considerations. As the diagnostic accuracy of X-ray and the broader care pathway will vary 

across populations (including the diagnosing clinicians, use of additional imaging modalities, 

use of precautionary tactics, and ongoing treatments), this means that the potential value of the 

technology will vary according to the population in which its used. The evaluation of the 
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technology within a representative population will therefore be key to deriving reliable estimates 

for outcomes. However, the target population is also not static, and will vary between types of 

urgent care settings (ED, UTC, MIU), across geographical areas in the UK, and will vary even 

within the same centre according to the day of the week, time of day, or season. Each centre 

will also vary in the local policies that they use to diagnose certain types of fractures and 

fractures in certain subpopulations, including their use of precautionary tactics but also including 

the typical staff available to read X-rays and the length of time until a definitive diagnosis is 

made. To inform understanding of the potential value of the technology, it will therefore be 

important to understand the way in which outcomes for the technology change according to 

differences in the population case mix, reader, and care pathway. 

The economic analysis contained within this report represented a very top-level overview of the 

likely costs and consequences of adopting AI-assisted diagnosis of fracture within urgent care 

settings. Due to the resource and time constraints of this EVA, the EAG was unable to explore a 

large number of issues and nuances apparent in the data and a substantive evidence synthesis 

project of 12-18 months’ duration would, in the opinion of the EAG, provide a solid appraisal of 

the evidence to fully inform a decision as to whether AI-assisted diagnosis of fracture 

represented a value for money investment in the NHS. Particular issues this should consider 

include: 

• Evaluation of the diagnostic accuracy, clinical and service outcomes associated with 

the technology within robust study designs within settings comparable with the 

likely use of the technology in clinical practice. 

This should include diagnostic randomised controlled trials and prospective, robustly 

sampled comparative studies (assisted vs. unassisted diagnosis) published in peer-

reviewed formats. Given that the technology would be expected to influence both clinical 

and service outcomes, future studies are needed to evaluate outcomes across both of 

these domains. 

• Formal network meta-analysis of studies and/or head-to-head studies 

A formal network meta-analysis was not considered feasible due to heterogeneity between 

studies (see section 5.2).  However, further work is required to determine whether a less 

formal synthesis could be conducted, or else head-to-head studies are required for all 

relevant AI algorithms / software. 
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• Studies to evaluate the factors that influence the value of the technology for 

identifying fractures 

This may include studies designed to explore change in outcomes according to key factors 

that would inform use of the technology, such as reader experience, case mix, and 

determinants of patient outcomes, such as patient age, frailty, and prevalence of health 

conditions affecting bone health. When a suitable evidence base is available, meta-

regression to explore factors that influence outcomes may help decision-makers to target 

the use of the technology in clinical practice. 

• Analysis of optimal cutoff points. 

This analysis made use of the stated sensitivity and specificity estimates from the literature.  

However, manufacturers of the algorithms (as well as the NHS) should consider the most 

cost-effective cut off score to maximise the efficiency of diagnosis.  For example, some 

algorithms will generate a propensity score or probability of an X-ray being a fracture.  An 

internal setting will determine what score and above is defined as a positive.  Varying this 

score varies the sensitivity and specificity (from which the ROC curve can be generated).  

Connecting this to a decision model allows estimation of the optimal cutoff score for an 

algorithm (Laking et al 200647) 

• Greater exploration of the likely longer-term costs and consequences of true and 

false positive and negative diagnoses. 

This analysis relied on published studies to approximate long term costs and consequences 

of the four outcomes from a diagnosis.  These varied in comparability, eg in terms of scope 

of resource use included and time horizon.  A more comprehensive model breaking these 

items down in greater detail would enhance comparability between the different fracture 

types. 

• Impact of detecting multiple fractures. 

The economic analysis did not differentiate between a single and multiple fracture in a 

single patient.  A particular use case and benefit of AI-assisted diagnosis could be in 

identifying a less obvious additional fracture which may be more likely to be missed by the 

reader.  Further research into the benefit of this is warranted. 

• Second read of only positives or only negatives 
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Scenario 9 of the economic analysis only considered a second read / review of all X-rays.  

An alternative approach is to review all positive or all negative diagnoses alone.  Additional 

modelling would facilitate exploring the cost-effectiveness of this which may assist in 

enhancing the efficiency of the diagnostic X-ray service in clinical practice. 

• Formal assessment of study quality 

Consistent with methods for an EVA, formal quality assessment of the included studies was 

not conducted, and quality limitations of the included studies was conducted informally and 

discussed throughout the report. However, formal quality assessment of the current and 

future evidence base would be useful for characterising the strength of the evidence and 

identifying key weaknesses and their effect on outcomes. For the assessment of diagnostic 

accuracy studies, QUADAS-AI,48 an extension to the original tool to account for the 

considerations specific to AI technologies, would be useful.  
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10. DISCUSSION 

The EAG conducted a broad evidence review to identify the available evidence base for the 

value of AI as assistance to identifying fractures in urgent care settings. The assessment 

identified an emerging though limited evidence base for the technology, with meaningful gaps in 

evidence to inform decision-making on the use of the technology in clinical practice. Almost all 

of the evidence base identified evaluated the diagnostic accuracy of the technology for 

identifying fractures, though these analyses were largely not specific to emergency care settings 

or the staff that were anticipated to typically use the technology in clinical practice. There were 

also significant methodological limitations in the evidence base, which increased uncertainty in 

the findings. Aside from X-ray reading time, there was no evidence for the impact of the 

technology on service outcomes, such as the use of additional imaging, hospital appointments, 

and patient recalls, and no evidence for the health outcomes of people with suspected fractures. 

Overall, there was a paucity of evidence for determining the potential value of the technology for 

use within NHS settings. 

In consideration of the limitations of the evidence base, the EAG tentatively concluded that there 

was early evidence that the technology may have value for reducing the risk of missed fractures 

but may not improve the avoidance of false positives. Due to uncertainty in the precise 

estimates reported by the studies, the EAG could not determine a reliable estimate for the 

reduction of missed fractures that could be avoided with the technology, though noted that the 

technology did not eradicate missed fractures entirely. Some studies, particularly those 

evaluating the accuracy of the technology in fracture types that were more difficult to identify, 

reported high rates of missed fractures that would be unacceptable in clinical practice. The 

implication of these findings was that while the technology may improve identification of 

fractures, its use would not remove the need for existing strategies used by urgent care settings 

to protect patients (such as further imaging, precautionary treatments, and fast turnaround times 

to definitive reports). As might be expected, there was less additional value of the technology 

when unassisted accuracy was already high, such as when used by senior staff and in fractures 

that were easier to diagnose. This would suggest that the technology may best be targeted 

towards the settings and populations where it may hold the greatest value; however, without 

evidence for the clinical and service outcomes that may be affected by using the technology, the 

EAG was unable to make this conclusion. For instance, the EAG considered it plausible that a 

small difference in sensitivity may nevertheless be meaningful if the additional fractures 
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identified would have otherwise resulted in significant health or resource implications. As noted 

in Section 9), further evidence is needed to explore this in order to inform decisions about if and 

how the technology could be used. 

The current evidence base also did not allow for an understanding of how the potential evidence 

base might vary according to the target population. The majority of studies identified reported 

very few details about the study sample demographics, including the prevalence of people with 

frailty and health conditions that affect bone health. Very few studies reported outcomes 

specifically in children, where the identification of fractures can be particularly difficult. This 

wasn’t notable in the results of the studies, however, where diagnostic accuracy both with and 

without the technology was not substantially different to results reported in adults alone. Given 

the limitations in the evidence base, the EAG considered that more evidence to evaluate the 

technology in children and across other key sub-populations would be important.  

The economic analyses suggested that most of the AI assisted diagnostic algorithms were 

associated with a positive incremental net health benefit compared with unassisted diagnosis at 

NICE’s lower and upper threshold band of £20,000 to £30,000 per QALY.  The data were of 

insufficient quality to enable a robust comparison of one algorithm against another in a fully 

incremental analysis, which would be required to ensure the varying diagnostic accuracy of the 

different algorithms are matched to their prices, and to encourage a competitive market for the 

benefit of NHS patients. The results were largely insensitive to the different scenario analyses 

considered, except for diagnostic accuracy of the algorithms and unassisted diagnosis. 

Overall, the results of this assessment must be considered within the context of the constraints 

of the EVA methods. Consistent with the aims of the EVA, the EAG adopted a pragmatic 

approach to the identification of evidence and exploration of this within its assessment. The 

EAG acknowledge a number of limitations to this approach, which included the use of single 

reviewer screening and data extraction, the broad inclusion criteria (allowing for the inclusion of 

lower quality evidence), and the lack of a formal quality assessment. The EAG was also unable 

to explore heterogeneity in the diagnostic accuracy results in more depth: while groupings of 

reader experience were made in order to aid interpretation of the results across studies, the 

EAG considered these to be unreliable, given difficulties in interpreting staff grades and 

experience as reported from publications of studies conducted in other countries. Given the 

variation in methods used across studies and the quality limitations of the evidence, further 

exploration of heterogeneity or re-grouping of studies may not have been meaningful, though 
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this is a limitation of the assessment. An exploratory economic analysis was developed, the 

objective of which was to establish whether there was a prima facie case for AI-assisted 

diagnosis of fracture to represent value for money for NHS patients (i.e. not to provide detailed 

guidance on and precise estimates of the cost-effectiveness of the different algorithms).  It 

should therefore be considered an approximation placing plausible bounds on the likely costs 

and consequences of the algorithms and not a definitive estimate of the cost-effectiveness.  A 

large number of gross assumptions were required to conduct the analysis within the 

assessment, for example the EAG was unable to consider the longer-term costs and 

consequences of false negatives and positives in anything but the most rudimentary manner.  

More detailed modelling in a full formal diagnostic assessment review is required to consider 

these issues and nuances, and how they are likely to impact the estimates of cost-effectiveness. 

In conclusion, this assessment identified preliminary evidence that AI may have potential value 

for use within urgent care settings to aid with the identification of fractures. In order to inform a 

full evaluation of the technology, that could be used to inform decisions on routine 

commissioning, a significant body of further evidence is needed to establish the clinical, service 

and economic outcomes associated with the technology in settings relevant to urgent care 

within the NHS. 
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Appendix A – Search strategies 

Date Database Name1 Total Number of records 
retrieved 

26/6/24 Medline ALL 745 

26/6/24 Embase 920 

26/6/24 The Cochrane Library 57 

26/6/24 Web of Science 167 

27/6/24 Company websites: 31 

1/7/24 Guidelines 5 

2/7/24 MHRA  0 

2/7/24 FDA 0 

2/7/24 Clinical Trials.gov 17 

2/7/24 ICTRP 1 

 HERC 0 

 CEA Registry 15 

 Company submissions 18 

 Total 1976 

 Duplicates 635 

 Total to screen 1341 

 

Search strategies 

Embase <1974 to 2024 June 25> 

1 exp artificial intelligence/ 106277 

2 exp *Machine Learning/ 206084 

3 ("deep learning" or "artificial neural network*" or "deep neural network*" or "convolutional 

neural network*").ti,ab,kf. 118642 

4 ((machine or transfer or algorithmic) adj2 Learning).ti,ab,kf. 144555 

5 ("AI" or "comput* Intelligence" or "comput* reasoning" or "machine Intelligence" or 

"artificial intelligence").ti,ab,kf. 114372 
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6 ("neural networks" or "natural language processing" or 'llm*1 or large language 

model*').ti,ab,kf. 79238 

7 ("reinforcement learning" or "deep belief network*" or "recurrent neural network*" or 

"feedforward neural network*").ti,ab,kf. 14879 

8 "feed forward neural network*".ti,ab,kf. 1080 

9 ("boltzmann machine*" or "long short-term memory" or "gated recurrent unit*" or 

"rectified linear unit*" or autoencoder or "auto-encoder" or backpropagation or "multilayer 

perceptron" or "multi-layer perceptron" or convnet or "convolutional learning").ti,ab,kf. 18309 

10 or/1-9 461984 

11 "diagnostic imaging".ti,ab,kf. 30009 

12 exp diagnostic imaging/ 275165 

13 exp X-Ray/ 89150 

14 (radiograph* or radiologist or radiogram or XR or x-ray or "radiological image*" or 

photographic or "digital image*" or radiology or roentgenogram or roentgenograph or "Rontgen 

ray*" or x-rayed or "x ray*").ti,ab,kf. 977193 

15 11 or 12 or 13 or 14 1247290 

16 exp fracture/ 370018 

17 ((fractur* or break* or fissur* or shatter* or crack* or splinter* or broken or dislocat* or 

luxat* or subluxat* or trauma or disjoint* or displace*) adj2 (bone* or joint* or skeletal or 

skeleton)).ti,ab,kf. 41115 

18 ((spiral or avulsion or compression or greenstick or "green stick" or intraarticular or "intra 

articular" or pathologic or stress or comminuted or dislocation or hairline or "hair line" or 

impacted or longitudinal or oblique or transverse or pathological or insufficiency or vertebral or 

elbow* or arm* or leg* or ankle* or wrist* or finger* or toe* or pelvis or pelvic or hip* or shoulder* 

or spine or spinal or chest or rib* or knee* or hand* or foot or feet or face or facial or 

microfracture or fatigue or macroscopic or periprosthetic) adj2 (fractur* or break* or fissur* or 

shatter* or crack* or splinter* or broken or injur*)).ti,ab,kf. 264517 
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19 (("long bone" or "short bone" or "flat bone" or sesamoid or irregular or epiphysis or 

physis or metaphysis or diaphysis or tubercle or epicondyle or complete or incomplete or 

displaced or non-displaced or "non displaced" or stable or unstable or simple or closed or 

segmental or bowing or buckle or oblique or complex or non-complex or "non complex" or 

salter-harris or "salter harris" or Lisfranc or "distal radial" or "growth plate" or suspect*) adj2 

(fractur* or break* or fissur* or shatter* or crack* or splinter* or broken or injur*)).ti,ab,kf. 49830 

20 or/16-19 544797 

21 10 and 15 and 20 1020 

22 (AZmed or "AZ med" or "AZ medical" or AZmedical or Gleamer or Radiobotics or Qure 

or Milvue).af. 206 

23 (Rayvolve or Boneview or "Bone view" or RBfracture or "RB fracture" or qMSK or qXR or 

qER or "TechCare Alert" or "Tech Care Alert" or SmartUrgence or "Smart Urgence").af. 128 

24 21 or 22 or 23 1307 

25 limit 24 to (dd=20200701-20240626 or rd=20200701-20240626 or dc=20200701-

20240626) 920 

 

 

Ovid MEDLINE(R) ALL <1946 to June 25, 2024> 

1 exp artificial intelligence/ 200607 

2 exp Machine Learning/ 70860 

3 ("deep learning" or "artificial neural network*" or "deep neural network*" or "convolutional 

neural network*").ti,ab,kf. 103348 

4 ((machine or transfer or algorithmic) adj2 Learning).ti,ab,kf. 125093 

5 ("AI" or "comput* Intelligence" or "comput* reasoning" or "machine Intelligence" or 

"artificial intelligence").ti,ab,kf. 91108 
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6 ("neural networks" or "natural language processing" or 'llm*1 or large language 

model*').ti,ab,kf. 66698 

7 ("reinforcement learning" or "deep belief network*" or "recurrent neural network*" or 

"feedforward neural network*").ti,ab,kf. 13366 

8 "feed forward neural network*".ti,ab,kf. 839 

9 ("boltzmann machine*" or "long short-term memory" or "gated recurrent unit*" or 

"rectified linear unit*" or autoencoder or "auto-encoder" or backpropagation or "multilayer 

perceptron" or "multi-layer perceptron" or convnet or "convolutional learning").ti,ab,kf. 16957 

10 or/1-9 387820 

11 "diagnostic imaging".ti,ab,kf. 21096 

12 exp diagnostic imaging/ 2977377 

13 X-Rays/ 32478 

14 (radiograph* or radiologist or radiogram or XR or x-ray or "radiological image*" or 

photographic or "digital image*" or radiology or roentgenogram or roentgenograph or "Rontgen 

ray*" or x-rayed or "x ray*").ti,ab,kf. 823590 

15 11 or 12 or 13 or 14 3516695 

16 exp fractures, bone/ 215213 

17 ((fractur* or break* or fissur* or shatter* or crack* or splinter* or broken or dislocat* or 

luxat* or subluxat* or trauma or disjoint* or displace*) adj2 (bone* or joint* or skeletal or 

skeleton)).ti,ab,kf. 31804 

18 ((spiral or avulsion or compression or greenstick or "green stick" or intraarticular or "intra 

articular" or pathologic or stress or comminuted or dislocation or hairline or "hair line" or 

impacted or longitudinal or oblique or transverse or pathological or insufficiency or vertebral or 

arm* or leg* or ankle* or wrist* or elbow* or finger* or toe* or pelvis or pelvic or hip* or shoulder* 

or spine or spinal or chest or rib* or knee* or hand* or foot or feet or face or facial or 

microfracture or fatigue or macroscopic or periprosthetic) adj2 (fractur* or break* or fissur* or 

shatter* or crack* or splinter* or broken or injur*)).ti,ab,kf. 211184 
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19 (("long bone" or "short bone" or "flat bone" or sesamoid or irregular or epiphysis or 

physis or metaphysis or diaphysis or tubercle or epicondyle or complete or incomplete or 

displaced or non-displaced or "non displaced" or stable or unstable or simple or closed or 

segmental or bowing or buckle or oblique or complex or non-complex or "non complex" or 

salter-harris or "salter harris" or Lisfranc or "distal radial" or "growth plate" or suspect*) adj2 

(fractur* or break* or fissur* or shatter* or crack* or splinter* or broken or injur*)).ti,ab,kf. 42244 

20 16 or 17 or 18 or 19 384408 

21 10 and 15 and 20 885 

22 (AZmed or "AZ med" or "AZ medical" or AZmedical or Gleamer or Radiobotics or Qure 

or Milvue).af. 146 

23 (Rayvolve or Boneview or "Bone view" or RBfracture or "RB fracture" or qMSK or qXR or 

qER or "TechCare Alert" or "Tech Care Alert" or "Smart Urgence" or SmartUrgence).af. 69 

24 21 or 22 or 23 1068 

25 limit 24 to (ed=20200701-20240626 or dt=20200701-20240626) 745 

 

The Cochrane Library 

Date Run: 26/06/2024 16:12:22 

ID Search Hits 

#1 MeSH descriptor: [Artificial Intelligence] explode all trees 3198 

#2 MeSH descriptor: [Machine Learning] explode all trees 986 

#3 ("deep learning" or artificial NEXT neural NEXT network* or deep NEXT neural NEXT 

network* or convolutional NEXT neural NEXT network*):ti,ab,kw 1772 

#4 ((machine or transfer or algorithmic) near/3 Learning):ti,ab,kw 3228 

#5 ("AI" or comput* NEXT Intelligence or comput* NEXT reasoning or "machine 

Intelligence" or "artificial intelligence"):ti,ab,kw 7206 
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#6 ("neural networks" or "natural language processing" or llm*1 or large NEXT language 

NEXT model*):ti,ab,kw 1291 

#7 ("reinforcement learning" or deep NEXT belief NEXT network* or recurrent NEXT neural 

NEXT network* or feedforward NEXT neural NEXT network*):ti,ab,kw 306 

#8 feed NEXT forward NEXT neural NEXT network*:ti,ab,kw 23 

#9 (boltzmann NEXT machine* or "long short-term memory" or gated NEXT recurrent NEXT 

unit* or rectified NEXT linear NEXT unit* or autoencoder or "auto-encoder" or backpropagation 

or "multilayer perceptron" or "multi-layer perceptron" or convnet or "convolutional 

learning"):ti,ab,kw 189 

#10 #1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 13275 

#11 "diagnostic imaging":ti,ab,kw 44309 

#12 MeSH descriptor: [Diagnostic Imaging] explode all trees 69276 

#13 MeSH descriptor: [X-Rays] explode all trees 106 

#14 (radiograph* or radiologist or radiogram or XR or x-ray or radiological NEXT image* or 

photographic or digital NEXT image* or radiology or roentgenogram or roentgenograph or 

Rontgen NEXT ray* or x-rayed or "x ray" or "x rayed"):ti,ab,kw 59279 

#15 #11 or #12 or #13 or #14 116068 

#16 MeSH descriptor: [Fractures, Bone] explode all trees 9509 

#17 ((fractur* or break* or fissur* or shatter* or crack* or splinter* or broken or dislocat* or 

luxat* or subluxat* or trauma or disjoint* or displace*) near/3 (bone* or joint* or skeletal or 

skeleton)):ti,ab,kw 7070 

#18 ((spiral or avulsion or compression or greenstick or "green stick" or intraarticular or "intra 

articular" or pathologic or stress or comminuted or dislocation or hairline or "hair line" or 

impacted or longitudinal or oblique or transverse or pathological or insufficiency or vertebral or 

elbow* or arm* or leg* or ankle* or wrist* or finger* or toe* or pelvis or pelvic or hip* or shoulder* 

or spine or spinal or chest or rib* or knee* or hand* or foot or feet or face or facial or 

microfracture or fatigue or macroscopic or periprosthetic) near/2 (fractur* or break* or fissur* or 

shatter* or crack* or splinter* or broken or injur*)):ti,ab,kw 25565 
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#19 (("long bone" or "short bone" or "flat bone" or sesamoid or irregular or epiphysis or 

physis or metaphysis or diaphysis or tubercle or epicondyle or complete or incomplete or 

displaced or non-displaced or "non displaced" or stable or unstable or simple or closed or 

segmental or bowing or buckle or oblique or complex or non-complex or "non complex" or 

salter-harris or "salter harris" or Lisfranc or "distal radial" or "growth plate" or suspect*) near/2 

(fractur* or break* or fissur* or shatter* or crack* or splinter* or broken or injur*)):ti,ab,kw 3290 

#20 #16 or #17 or #18 or #19 32637 

#21 #10 and #15 and #20 53 

#22 (AZmed or "AZ med" or "AZ medical" or AZmedical or Gleamer or Radiobotics or Qure 

or Milvue) 50 

#23 (Rayvolve or Boneview or "Bone view" or RBfracture or "RB fracture" or qMSK or qXR or 

qER or "TechCare Alert" or "Tech Care Alert" or SmartUrgence or "Smart Urgence") 24 

#24 #21 or #22 or #23 125 

Limit to 2020-2024    57 

 

Web of Science 

#1 TS=("boltzmann machine*" or "long short-term memory" or "gated recurrent unit*" or 

"rectified linear unit*" or autoencoder or "auto-encoder" or backpropagation or "multilayer 

perceptron" or "multi-layer perceptron" or convnet or "convolutional learning")   109,743 

#2 TS=("feed forward neural network*")  7,197 

#3 TS=("reinforcement learning" or "deep belief network*" or "recurrent neural network*" or 

"feedforward neural network*")   102,380 

#4 TS=("neural networks" or "natural language processing" or llm*1 or "large language model*") 

   413,303 

#5 TS=(("AI" or "comput* Intelligence" or "comput* reasoning" or "machine Intelligence" or 

"artificial intelligence"))  263,773 

#6 TS=(((machine or transfer or algorithmic) N2 Learning))  218 
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#7 TS=("deep learning" or "artificial neural network*" or "deep neural network*" or "convolutional 

neural network*")   503,397 

#8  #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7   1,003,767 

#9 TS=(("long bone" or "short bone" or "flat bone" or sesamoid or irregular or epiphysis or 

physis or metaphysis or diaphysis or tubercle or epicondyle or complete or incomplete or 

displaced or non-displaced or "non displaced" or stable or unstable or simple or closed or 

segmental or bowing or buckle or oblique or "distal radial" or Lisfranc or complex or non-

complex or "non complex" or salter-harris or "salter harris" or "growth plate" or suspect*) N2 

(crack* or splinter* or broken or injur*))  406 

#10 TS=(("long bone" or "short bone" or "flat bone" or sesamoid or irregular or epiphysis or 

physis or metaphysis or diaphysis or tubercle or epicondyle or complete or incomplete or 

displaced or non-displaced or "non displaced" or stable or unstable or simple or closed or 

segmental or bowing or buckle or oblique or complex or non-complex or "non complex" or 

salter-harris or "salter harris" or Lisfranc or "distal radial" or "growth plate" or suspect*) N2 

(fractur* or break* or fissur* or shatter*))  467 

#11 TS=((spiral or avulsion or compression or greenstick or "green stick" or intraarticular or 

"intra articular" or pathologic or stress or comminuted or dislocation or hairline or "hair line" or 

impacted or longitudinal or oblique or transverse or pathological or insufficiency or vertebral or 

arm* or leg* or ankle* or wrist* or pelvis or pelvic or hip* or shoulder* or spine or spinal or chest 

or rib* or knee* or hand* or elbow* or finger* or toe* or foot or feet or face or facial or 

microfracture or fatigue or macroscopic or periprosthetic) N2 (crack* or splinter* or broken or 

injur*))  416 

#12 TS=((spiral or avulsion or compression or greenstick or "green stick" or intraarticular or 

"intra articular" or pathologic or stress or comminuted or dislocation or hairline or "hair line" or 

impacted or longitudinal or oblique or transverse or pathological or insufficiency or vertebral or 

arm* or leg* or ankle* or wrist* or pelvis or pelvic or hip* or shoulder* or spine or spinal or chest 

or rib* or knee* or hand* or elbow* or foot or feet or finger* or toe* or face or facial or 

microfracture or fatigue or macroscopic or periprosthetic) N2 (fractur* or break* or fissur* or 

shatter*))   427 
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#13 TS=((fractur* or break* or fissur* or shatter* or crack* or splinter* or broken or dislocat* or 

luxat* or subluxat* or trauma or disjoint* or displace*) N2 (bone* or joint* or skeletal or skeleton) 

   73 

#14  #9 OR #10 OR #11 OR #12 OR #13  1,259 

#15  #8 AND #14      7 

#16 ALL=(AZmed or "AZ med" or "AZ medical" or AZmedical or Gleamer or Radiobotics or Qure 

or Milvue)     273 

#17 ALL=(Rayvolve or Boneview or "Bone view" or RBfracture or "RB fracture" or qMSK or qXR 

or qER or "TechCare Alert" or "Tech Care Alert" or SmartUrgence or "Smart Urgence") 107 

#18  #15 OR #16 OR #17 and 2020 or 2021 or 2022 or 2023 or 2024 (Publication Years) 167 
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Appendix B – PRISMA diagrams 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Records identified from*: 
Databases (n = 1889) 
 Medline (n.=.745) 
 Embase (n = 920) 
 Cochrane (n = 57) 
 Web of Science (n = 167) 
Registers (n = 18) 
 Clinicaltrials.gov (n = 17) 
 WHO ICTRP (n = 1) 

Duplicate records removed  
(n = 654) 

Records screened 
(n = 1343) Records excluded** 

(n = 1132) 

Reports sought for retrieval 
(n = 211) 

Reports not retrieved 
(n = 2) 
(not in English language) 

Reports assessed for eligibility 
(n = 209) 

Reports excluded (n=178): 
Wrong publication type (n=11) 
Wrong AI (n = 36) 
Standalone AI (n =12 ) 
Unclear AI (n = 64 ) 
Open source AI.(n=18) 
Wrong population (n=11) 
Wrong outcome (n=6) 
Wrong study design (n=10) 
Wrong intervention (n=4) 

Records identified from: 
Company websites (n = 31) 
Guidelines (n = 5) 
Citation searching (n = 19) 
Economics websites (n = 15) 
Company submissions (n.= 20) 

Studies included in review (n=31) 
 Clinical studies (n=30) 
 Ongoing clinical studies (n=7) 
 Economics studies (n=7) 

Identification of studies via databases and registers Identification of studies via other methods 

Id
e

n
ti

fi
c
a

ti
o

n
 

S
c

re
e

n
in

g
 

 
In

c
lu

d
e
d

 



Artificial intelligence software to help detect fractures on X-rays in urgent care: An Early Value Assessment  

Page 143 of 159 

 

*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all 
databases/registers). 
**If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools. 
 
Source: Page MJ, et al. BMJ 2021;372:n71. doi: 10.1136/bmj.n71.          

This work is licensed under CC BY 4.0. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/  
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Appendix C – Excluded studies 

 

Table 49: List of excluded English-language publications studies from company lists, with reasons 

Excluded study Reason for exclusion 

Gleamer  

Altmann-Schneider 2023 Standalone AI 

Hayashi 2022 Standalone AI 

Pediatric FRACTURE study (https://fracturestudy.com) Ongoing study. Unclear but appears as standalone AI. 

Regnard et al 2022 Standalone AI 

Russe et al. 2024 Standalone AI 

Boginskis 2023 Wrong outcome (no scoped outcomes reported) 

Jacques 2024 Wrong reference standard (CT) 

Hoppe 2024 De-prioritised as low priority outcome (clinician 
acceptability) 

Rosa 2023 Standalone AI 

Milvue  

Fanni et al 2023 Wrong study design (literature review) 

Parpaleix et al 2023 Standalone AI 

Ranjan et al 2023 Wrong study design (narrative review) 

Van Leeuwen 2024 
Wrong population (bone age and lung nodule 
detection) 

Zerouali et al 2023 Wrong population (estimating alignment) 

Lind Plesner 2023 
Wrong population (airspace disease, pneumothorax, 
pleural effusion) 

Shelmerdine 2022 Standalone AI 
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Excluded study Reason for exclusion 

Radiobotics  

Radiobotics S3. Anyebe 2023 Standalone AI 

Confidential doc 88 data description for verification Rev 10 No outcome data 

Radiobotics. S4 confidential company submission. Post-Market Surveillance & Collection 

of Metrics 
Wrong study design (details of data to be collected 
through post-marketing surveillance) 

Radiobotics. S5 confidential company submission. Artificial Intelligence (AI) in a 

Singaporean Emergency Department: Detecting Fractures and Reducing Recalls Standalone AI 

Radiobotics. S6 confidential company submission. Deploying Artificial Intelligence in the 

Detection of Adult Appendicular Fractures in the Emergency Department After-hours: Efficacy, 
Cost-savings and Non-monetary Benefits. Standalone AI 

Radiobotics. S10 confidential company submission. Evaluation of generalizability of an 
ai tool for radiographic fracture detection in a multi-country performance study. Standalone AI 

Radiobotics. S12 confidential company submission. Is acute fracture assessment 
improved 
with AI support? 

Wrong study design (summary of evidence for 
Radiobotics, no new data) 

Radiobotics. S2. Reducing Missed Fractures: Radiobotics’ RBfracture™ at Kettering 
General Hospital. 2024. 

Standalone AI 

Radiobotics. S13. One Laudos, BZ. RBfracture retrospective pilot study Standalone AI 

 

Table 50: List of excluded full-text publications from EAG evidence search, with reasons 

Excluded study Reason for 
exclusion 

Clinical Validation of Boneview for FDA Submission: Evaluation of the Ability of the Artificial Intelligence Software, 
Boneview, to Improve Physicians' and Radiologists' Performances in Detecting Fractures on Bone X-Rays Radiographs 
2020. 

Wrong publication 
type 

Retrospective Study Comparing Radiologist Diagnostic Performance Versus Artificial Intelligence (AI) for Hip Fracture 
Suspicion in Elderly Patients 2020. 

Wrong publication 
type 

Multicenter Validation Study of an Artificial Intelligence Tool for Automatic Classification of Chest X-rays 2021. Unclear AI 
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Excluded study Reason for 
exclusion 

Assessment of AI Performance for the Detection of Bone Fractures in Children Aged Less Than 2 Years Old in Suspected 
Child Abuse Setting 2022. 

Standalone AI 

A Prospective Observational Study of Artificial Intelligence Morphometric Evaluation of Vertebral Fractures 2024. Wrong AI 

Altmann-Schneider I, Pistorius S, Saladin C, Schafer D, Fischer H, Arslan N, et al. Diagnostic performance of an artificial 
intelligence aid for the detection of pediatric appendicular skeletal fractures. Pediatric Radiology. 2023;53(Supplement 
2):S178-S9. 

Standalone AI 

Ananda A, Ngan KH, Karabag C, Ter-Sarkisov A, Alonso E, Reyes-Aldasoro CC. Classification and Visualisation of Normal 
and Abnormal Radiographs; A Comparison between Eleven Convolutional Neural Network Architectures. Sensors (Basel, 
Switzerland). 2021;21(16). 

Open source AI 

Anderson PG, Baum GL, Keathley N, Sicular S, Venkatesh S, Sharma A, et al. Deep Learning Assistance Closes the Accuracy 
Gap in Fracture Detection Across Clinician Types. Clinical orthopaedics and related research. 2023;481(3):580-8. 

Wrong AI 

Anttila TT, Karjalainen TV, Makela TO, Waris EM, Lindfors NC, Leminen MM, et al. Detecting Distal Radius Fractures Using 
a Segmentation-Based Deep Learning Model. Journal of digital imaging. 2023;36(2):679-87. 

Open source AI 

Aryasomayajula S, Hing CB, Siebachmeyer M, Naeini FB, Ejindu V, Leitch P, et al. Developing an artificial intelligence 
diagnostic tool for paediatric distal radius fractures, a proof of concept study. Annals of the Royal College of Surgeons of 
England. 2023;105(8):721-8. 

Unclear AI 

Bartha E, Davidson T, Hommel A, Thorngren KG, Carlsson P, Kalman S. Cost-effectiveness analysis of goal-directed 
hemodynamic treatment of elderly hip fracture patients: before clinical research starts. Anesthesiology. 
2012;117(3):519-30. 

Wrong population 

Beaupre LA, Lier D, Smith C, Evens L, Hanson HM, Juby AG, et al. A 3i hip fracture liaison service with nurse and physician 
co-management is cost-effective when implemented as a standard clinical program. Arch Osteoporos. 2020;15(1):113. 

Wrong population 

Bettinger H, Lenczner G, Guigui J, Rotenberg L, Zerbib E, Attia A, et al. Evaluation of the Performance of an Artificial 
Intelligence (AI) Algorithm in Detecting Thoracic Pathologies on Chest Radiographs. Diagnostics (Basel, Switzerland). 
2024;14(11). 

Wrong population 

Beyaz S, Acici K, Sumer E. Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm 
approaches. Joint diseases and related surgery. 2020;31(2):175-83. 

Unclear AI 

Bhandarkar AR, Onyedimma C, Jarrah R, Fu S, Liu H, Bydon M. An Integrated Voice Recognition and Natural Language 
Processing Platform to Automatically Extract Thoracolumbar Injury Classification Score (TLICS) Features from Radiology 
Reports. Clinical Neurosurgery. 2022;68:50-1. 

Wrong population 

Boginskis V, Zadoroznijs S, Cernavska I, Beikmane D, Sauka J. Artificial intelligence effectivity in fracture detection. 
Medicni perspektivi. 2023;28(3):68-78. 

Wrong outcome (no 
scoped outcomes 
reported) 
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Excluded study Reason for 
exclusion 

Bulstra AEJ, Buijze GA, Cohen A, Colaris JW, Court-Brown CM, Doornberg JN, et al. A Machine Learning Algorithm to 
Estimate the Probability of a True Scaphoid Fracture After Wrist Trauma. Journal of Hand Surgery. 2022;47(8):709-18. 

Unclear AI 

Burkow J, Holste G, Otjen J, Perez F, Junewick J, Zbojniewicz A, et al. High sensitivity methods for automated rib fracture 
detection in pediatric radiographs. Scientific reports. 2024;14(1):8372. 

Unclear AI 

Burkow J, Holste G, Perez F, Junewick J, Zbojniewicz A, Frost J, et al. Rib fracture detection in pediatric radiographs via 
deep convolutional neural networks. Pediatric Radiology. 2021;51:S125. 

Unclear AI 

Chen C, Zhang Z, Tsai T, Kuo K. Artificial intelligence to improve osteoporosis screening on x-ray radiographs. 
Osteoporosis International. 2020;31:S352. 

Unclear AI 

Chen H-Y, Hsu BW-Y, Yin Y-K, Lin F-H, Yang T-H, Yang R-S, et al. Application of deep learning algorithm to detect and 
visualize vertebral fractures on plain frontal radiographs. PloS one. 2021;16(1):e0245992. 

Unclear AI 

Chen HY, Soong C, Lin FH, Yang TH, Chan DC, Chang CH, et al. Application of deep learning algorithm to detect and 
visualize vertebral fractures on plain radiographs. Osteoporosis and Sarcopenia. 2023;9(4):S3. 

Unclear AI 

Cheng C-T, Chen C-C, Cheng F-J, Chen H-W, Su Y-S, Yeh C-N, et al. A Human-Algorithm Integration System for Hip Fracture 
Detection on Plain Radiography: System Development and Validation Study. JMIR medical informatics. 
2020;8(11):e19416. 

Unclear AI 

Cheng CT, Hsu CP, Ooyang CH, Chou CY, Lin NY, Lin JY, et al. Evaluation of ensemble strategy on the development of 
multiple view ankle fracture detection algorithm. British Journal of Radiology. 2023;96(1145):20220924. 

Open source AI 

Cheng CT, Wang Y, Chen HW, Hsiao PM, Yeh CN, Hsieh CH, et al. A scalable physician-level deep learning algorithm 
detects universal trauma on pelvic radiographs. Nature Communications. 2021;12(1):1066. 

Wrong AI 

Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, et al. Deep learning algorithms for detection 
of critical findings in head CT scans: a retrospective study. The Lancet. 2018;392(10162):2388-96. 

Wrong population 

Choi J, Hui JZ, Spain D, Su YS, Cheng CT, Liao CH. Practical computer vision application to detect hip fractures on pelvic X-
rays: A bi-institutional study. Trauma Surgery and Acute Care Open. 2021;6(1):e000705. 

Open source AI 

Choi JW, Cho YJ, Ha JY, Lee YY, Koh SY, Seo JY, et al. Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain 
Radiographs. Korean journal of radiology. 2022;23(3):343-54. 

Wrong AI 

Choi JW, Cho YJ, Lee S, Lee J, Lee S, Choi YH, et al. Using a Dual-Input Convolutional Neural Network for Automated 
Detection of Pediatric Supracondylar Fracture on Conventional Radiography. Investigative radiology. 2020;55(2):101-10. 

Unclear AI 

Curl PK, Jacob AMD, Bresnahan B, Cross NM, Jarvik JG. Cost-Effectiveness of Artificial Intelligence-Based Opportunistic 
Compression Fracture Screening of Existing Radiographs. Journal of the American College of Radiology : JACR. 2024. 

Wrong AI, wrong 
study design 

Dasegowda G, Sato JY, Elton DC, Garza-Frias E, Schultz T, Bridge CP, et al. No code machine learning: validating the 
approach on use-case for classifying clavicle fractures. Clinical imaging. 2024;112:110207. 

Unclear AI 

Dupuis, M et al. External validation of an artificial intelligence solution for the detection of elbow fractures and joint Unclear if standalone 
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Excluded study Reason for 
exclusion 

effusions in children, Diagnostic and Interventional Imaging, 105(3), 2024, 104-109. AI (no response from 
company clarification) 

Dupuis M, Delbos L, Veil R, Adamsbaum C. External validation of a commercially available deep learning algorithm for 
fracture detection in children. Diagnostic and Interventional Imaging. 2022;103(3):151-9. 

Unclear if standalone 
AI (no response from 
company clarification) 

Elton DC, Dasegowda G, Sato JY, Frias EG, Bridge CP, Mamonov AB, et al. No-code machine learning in radiology: 
implementation and validation of a platform that allows clinicians to train their own models. medRxiv. 2024. 

Unclear AI 

Erdas CB. Automated fracture detection in the ulna and radius using deep learning on upper extremity radiographs. Joint 
diseases and related surgery. 2023;34(3):598-604. 

Open source AI 

Food US, Administration D. (FDA) USFaDA. Artificial Intelligence and Machine Learning (AI/ML)- Enabled Medical 
Devices2023 2023. 

Wrong publication 
type 

Futurist TM. FDA Approved AI Based Algorithms. Wrong publication 
type 

Gao Y, Soh NYT, Liu N, Lim G, Ting D, Cheng LT-E, et al. Application of a deep learning algorithm in the detection of hip 
fractures. iScience. 2023;26(8):107350. 

Unclear AI 

Ghosh A, Patton D, Bose S, Henry MK, Ouyang M, Huang H, et al. A Patch-Based Deep Learning Approach for Detecting 
Rib Fractures on Frontal Radiographs in Young Children. Journal of digital imaging. 2023;36(4):1302-13. 

Open source AI 

Ghosh A, Patton D, Bose S, Ouyang M, Huang H, Sze R, et al. A Patch-based Convolutional Neural Network Approach for 
the Detection of Rib Fractures on Frontal Radiographs in Young Children. Pediatric Radiology. 2022;52:S48. 

Unclear AI 

Gipson J, Tang V, Seah J, Kavnoudias H, Zia A, Lee R, et al. Diagnostic accuracy of a commercially available deep-learning 
algorithm in supine chest radiographs following trauma. The British journal of radiology. 2022;95(1134):20210979. 

Wrong AI 

Govindarajan A, Govindarajan A, Tanamala S, Chattoraj S, Reddy B, Agrawal R, et al. Role of an Automated Deep Learning 
Algorithm for Reliable Screening of Abnormality in Chest Radiographs: A Prospective Multicenter Quality Improvement 
Study. Diagnostics (Basel, Switzerland). 2022;12(11). 

Wrong population 

Guo J, Mu Y, Xue D, Li H, Chen J, Yan H, et al. Automatic analysis system of calcaneus radiograph: Rotation-invariant 
landmark detection for calcaneal angle measurement, fracture identification and fracture region segmentation. 
Computer methods and programs in biomedicine. 2021;206:106124. 

Unclear AI 

Guo L, Zhou C, Xu J, Huang C, Yu Y, Lu G. Deep Learning for Chest X-ray Diagnosis: Competition Between Radiologists with 
or Without Artificial Intelligence Assistance. Journal of imaging informatics in medicine. 2024;37(3):922-34. 

Unclear AI 

Hansen V, Jensen J, Kusk MW, Gerke O, Tromborg HB, Lysdahlgaard S. Deep learning performance compared to 
healthcare experts in detecting wrist fractures from radiographs: A systematic review and meta-analysis. European 
journal of radiology. 2024;174:111399. 

Wrong study design 
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Excluded study Reason for 
exclusion 

Hayashi D, Kompel AJ, Ventre J, Ducarouge A, Nguyen T, Regnard N-E, et al. Automated detection of acute appendicular 
skeletal fractures in pediatric patients using deep learning. Skeletal radiology. 2022;51(11):2129-39. 

Standalone AI 

NICE. Hip fracture: management. Clinical guideline [CG124]2011 2011-6-22. Wrong publication 
type 

NICE. Osteoporosis: assessing the risk of fragility fracture. Clinical guideline [CG146]2012 2012-8-8. Wrong publication 
type 

NICE. Fractures (complex): assessment and management. NICE guideline [NG37]2016 2016-2-17. Wrong publication 
type 

NICE. Fractures (non-complex): assessment and management. NICE guideline [NG38]2016 2016-2-17. Wrong publication 
type 

Hendrix N, Hendrix W, van Dijke K, Maresch B, Maas M, Bollen S, et al. Musculoskeletal radiologist-level performance by 
using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist. 
European radiology. 2023;33(3):1575-88. 

Open source AI 

Hendrix N, Scholten E, Vernhout B, Bruijnen S, Maresch B, de Jong M, et al. Development and validation of a 
convolutional neural network for automated detection of scaphoid fractures on conventional radiographs. Radiology: 
Artificial Intelligence. 2021;3(4):e200260. 

Unclear AI 

Hong N, Cho SW, Shin S, Lee S, Jang SA, Roh S, et al. Deep-Learning-Based Detection of Vertebral Fracture and 
Osteoporosis Using Lateral Spine X-Ray Radiography. Journal of bone and mineral research : the official journal of the 
American Society for Bone and Mineral Research. 2023;38(6):887-95. 

Open source AI 

Hoppe BF, Rueckel J, Dikhtyar Y, Heimer M, Fink N, Sabel BO, et al. Implementing Artificial Intelligence for Emergency 
Radiology Impacts Physicians' Knowledge and Perception: A Prospective Pre- and Post-Analysis. Investigative Radiology. 
2024;59(5). 

De-prioritised for 
inclusion as a low 
priority outcome 
(clinician acceptability) 

Huhtanen JT, Nyman M, Doncenco D, Hamedian M, Kawalya D, Salminen L, et al. Deep learning accurately classifies 
elbow joint effusion in adult and pediatric radiographs. Scientific reports. 2022;12(1):11803. 

Unclear AI 

Oppenheimer. An overview of the performance of AI in fracture detection in lumbar and thoracic spine radiographs on a 
per vertebra basis. Skeletal radiology. 2024;53(8):1563-71. 

Standalone AI 

Janisch M, Apfaltrer G, Hrzic F, Castellani C, Mittl B, Singer G, et al. Pediatric radius torus fractures in x-rays-how 
computer vision could render lateral projections obsolete. Frontiers in Pediatrics. 2022;10:1005099. 

Unclear AI 

Jeong TS, Yee GT, Kim KG, Kim YJ, Lee SG, Kim WK. Automatically Diagnosing Skull Fractures Using an Object Detection 
Method and Deep Learning Algorithm in Plain Radiography Images. Journal of Korean Neurosurgical Society. 
2022;66(1):53-62. 

Unclear AI 
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Excluded study Reason for 
exclusion 

Jimenez-Sanchez A, Kazi A, Albarqouni S, Kirchhoff C, Biberthaler P, Navab N, et al. Precise proximal femur fracture 
classification for interactive training and surgical planning. International journal of computer assisted radiology and 
surgery. 2020;15(5):847-57. 

Unclear AI 

Jones CM, Danaher L, Milne MR, Tang C, Seah J, Oakden-Rayner L, et al. Assessment of the effect of a comprehensive 
chest radiograph deep learning model on radiologist reports and patient outcomes: a real-world observational study. 
BMJ Open. 2021;11(12):e052902. 

Wrong population 

Jones RM, Sharma A, Hotchkiss R, Sperling JW, Hamburger J, Ledig C, et al. Assessment of a deep-learning system for 
fracture detection in musculoskeletal radiographs. npj Digital Medicine. 2020;3(1):144. 

Unclear AI 

Jonsson B, Kanis J, Dawson A, Oden A, Johnell O. Effect and offset of effect of treatments for hip fracture on health 
outcomes. Osteoporos Int. 1999;10(3):193-9. 

Wrong population 

Kandel I, Castelli M. Improving convolutional neural networks performance for image classification using test time 
augmentation: a case study using MURA dataset. Health information science and systems. 2021;9(1):33. 

Unclear AI 

Kaviani P, Kalra MK, Digumarthy SR, Gupta RV, Dasegowda G, Jagirdar A, et al. Frequency of Missed Findings on Chest 
Radiographs (CXRs) in an International, Multicenter Study: Application of AI to Reduce Missed Findings. Diagnostics 
(Basel, Switzerland). 2022;12(10). 

Wrong AI 

Kaya O, Tasci B. A Pyramid Deep Feature Extraction Model for the Automatic Classification of Upper Extremity Fractures. 
Diagnostics. 2023;13(21):3317. 

Unclear AI 

Kekatpure A, Deshpande S, Srivastava S. Development of a diagnostic support system for distal humerus fracture using 
artificial intelligence. International Orthopaedics. 2024. 

Open source AI 

Kim MW, Jung J, Park SJ, Park YS, Yi JH, Yang WS, et al. Application of convolutional neural networks for distal radio-ulnar 
fracture detection on plain radiographs in the emergency room. Clinical and Experimental Emergency Medicine. 
2021;8(2):120-7. 

Unclear AI 

Kim S, Rebmann P, Tran PH, Kellner E, Reisert M, Steybe D, et al. Multiclass datasets expand neural network utility: an 
example on ankle radiographs. International journal of computer assisted radiology and surgery. 2023;18(5):819-26. 

Open source AI 

Kim T, Goh TS, Lee JS, Lee JH, Kim H, Jung ID. Transfer learning-based ensemble convolutional neural network for 
accelerated diagnosis of foot fractures. Physical and engineering sciences in medicine. 2023;46(1):265-77. 

Wrong AI 

Kitamura G, Chung CY, Moore BE, 2nd. Ankle Fracture Detection Utilizing a Convolutional Neural Network Ensemble 
Implemented with a Small Sample, De Novo Training, and Multiview Incorporation. Journal of digital imaging. 
2019;32(4):672-7. 

Wrong AI 

Kong SH, Kim JH, Lee JW, Bae BU, Sung JK, Jung KH, et al. Development of Spine Radiography-Based Fracture Prediction 
Model Using Convolutional Neural Network. Journal of Bone and Mineral Research. 2020;35:207. 

Unclear AI 

Koska OI, Cilengir AH, Uluc ME, Yucel A, Tosun O. All-star approach to a small medical imaging dataset: combined deep, Unclear AI 
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Excluded study Reason for 
exclusion 

transfer, and classical machine learning approaches for the determination of radial head fractures. Acta radiologica 
(Stockholm, Sweden : 1987). 2023;64(4):1476-83. 

Krogue JD, Cheng KV, Hwang KM, Toogood P, Meinberg EG, Geiger EJ, et al. Automatic Hip Fracture Identification and 
Functional Subclassification with Deep Learning. Radiology Artificial intelligence. 2020;2(2):e190023. 

Unclear AI 

Kruger N, Abramowitz S, Nitschke G. A197: Machine learning in diagnosing cervical spine injuries. Global Spine Journal. 
2022;12(3):113S. 

Unclear AI 

Langerhuizen DWG, Bulstra AEJ, Janssen SJ, Ring D, Kerkhoffs GMMJ, Jaarsma RL, et al. Is Deep Learning On Par with 
Human Observers for Detection of Radiographically Visible and Occult Fractures of the Scaphoid? Clinical orthopaedics 
and related research. 2020;478(11):2653-9. 

Unclear AI 

Langerhuizen DWG, Janssen SJ, Mallee WH, van den Bekerom MPJ, Ring D, Kerkhoffs G, et al. What Are the Applications 
and Limitations of Artificial Intelligence for Fracture Detection and Classification in Orthopaedic Trauma Imaging? A 
Systematic Review. Clin Orthop Relat Res. 2019;477(11):2482-91. 

Wrong study design 

Lassalle L, Regnard NE, Ventre J, Marty V, Clovis L, Zhang Z, et al. Automated weight-bearing foot measurements using an 
artificial intelligence-based software. Skeletal Radiology. 2024. 

Wrong population 

OneLaudos, Radiobotics. RBfracture retrospective pilot study. Standalone AI 

Lee KC, Choi IC, Kang CH, Ahn KS, Yoon H, Lee JJ, et al. Clinical Validation of an Artificial Intelligence Model for Detecting 
Distal Radius, Ulnar Styloid, and Scaphoid Fractures on Conventional Wrist Radiographs. Diagnostics. 2023;13(9):1657. 

Wrong AI 

Lee S, Kim KG, Kim YJ, Jeon JS, Lee GP, Kim K-C, et al. Automatic Segmentation and Radiologic Measurement of Distal 
Radius Fractures Using Deep Learning. Clinics in orthopedic surgery. 2024;16(1):113-24. 

Unclear AI 

Li W, Chui TKH, Tiu KL, Lee KB, Lai KC, Li KK. AUTOMATED DETECTION AND LOCALIZATION OF VERTEBRAL COMPRESSION 
FRACTURES FOR EARLY IDENTIFICATION AND INITIATION OF MANAGEMENT. Aging Clinical and Experimental Research. 
2023;35:S289-S90. 

Unclear AI 

Liu X, Li K, Luo Y, Bai S, Wu J, Chen W, et al. A deep-learning model for identifying fresh vertebral compression fractures 
on digital radiography. European Radiology. 2022;32(3):1496-505. 

Wrong AI 

Lu X, Chang EY, Du J, Yan A, McAuley J, Gentili A, et al. Robust Multi-View Fracture Detection in the Presence of Other 
Abnormalities Using HAMIL-Net. Military medicine. 2023;188(6):590-7. 

Wrong AI 

Luo J, Kitamura G, Arefan D, Doganay E, Panigrahy A, Wu S. Knowledge-Guided Multiview Deep Curriculum Learning for 
Elbow Fracture Classification. Machine learning in medical imaging MLMI (Workshop). 2021;12966:555-64. 

Open source AI 

Lysdahlgaard S. Utilizing heat maps as explainable artificial intelligence for detecting abnormalities on wrist and elbow 
radiographs. Radiography (London, England : 1995). 2023;29(6):1132-8. 

Wrong AI 

Ma Y, Luo Y. Bone fracture detection through the two-stage system of Crack-Sensitive Convolutional Neural Network. 
Informatics in Medicine Unlocked. 2021;22:100452. 

Wrong AI 
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Excluded study Reason for 
exclusion 

Maarek R, Hermann AL, Kamoun A, Marchi A, Khelifi R, Collin M, et al. Assessment of an AI aid in detection of paediatric 
appendicular skeletal fractures by senior and junior radiologists. Insights into Imaging. 2022;14:36-7. 

Unclear AI 

Mert S, Stoerzer P, Brauer J, Fuchs B, Haas-Lützenberger EM, Demmer W, et al. Diagnostic power of ChatGPT 4 in distal 
radius fracture detection through wrist radiographs. Arch Orthop Trauma Surg. 2024;144(5):2461-7. 

Standalone AI 

Michelson JD. Using decision analysis to assess comparative clinical efficacy of surgical treatment of unstable ankle 
fractures. J Orthop Trauma. 2013;27(11):642-8. 

Incorrect population 

Min H, Rabi Y, Wadhawan A, Bourgeat P, Dowling J, White J, et al. Automatic classification of distal radius fracture using a 
two-stage ensemble deep learning framework. Physical and engineering sciences in medicine. 2023;46(2):877-86. 

Open source AI 

Moghaddam SA, Yadekar M, Vahdat AS, Esmaeili F. AUTOMATIC DETECTION OF MANDIBULAR FRACTURES ON 
PANORAMIC RADIOGRAPHS USING THE CONVOLUTIONAL NEURAL NETWORK. Russian Electronic Journal of Radiology. 
2023;13(3):5-13. 

Unclear AI 

Mosquera C, Diaz FN, Binder F, Rabellino JM, Benitez SE, Beresnak AD, et al. Chest x-ray automated triage: A semiologic 
approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep 
Learning architectures. Computer Methods and Programs in Biomedicine. 2021;206:106130. 

Unclear AI 

Murphy EA, Ehrhardt B, Gregson CL, von Arx OA, Hartley A, Whitehouse MR, et al. Machine learning outperforms clinical 
experts in classification of hip fractures. Scientific reports. 2022;12(1):2058. 

Open source AI 

Naguib SM, Hamza HM, Hosny KM, Saleh MK, Kassem MA. Classification of Cervical Spine Fracture and Dislocation Using 
Refined Pre-Trained Deep Model and Saliency Map. Diagnostics (Basel, Switzerland). 2023;13(7). 

Unclear AI 

Nagy E, Marterer R, Hrzic F, Sorantin E, Tschauner S. Learning rate of students detecting and annotating pediatric wrist 
fractures in supervised artificial intelligence dataset preparations. PloS one. 2022;17(10):e0276503. 

Wrong AI 

Nam Y, Choi Y, Kang J, Seo M, Heo SJ, Lee MK. Diagnosis of nasal bone fractures on plain radiographs via convolutional 
neural networks. Scientific reports. 2022;12(1):21510. 

Open source AI 

Nassiri F, Davy G, Wright C, Ingrand P. Artificial Intelligence Software: Can it Improve the MSK Decision Making of 
Radiographers? A Pilot Study in France. Journal of Medical Imaging and Radiation Sciences. 2022;53(4):S11. 

Unclear AI 

Ngan E, Nguyen HT, Cano M, Jones L, Annapragada A, Kan JH, et al. Children's Long Bones Fracture Subtype Identification 
and Localization on Plain Radiographs of Using Neural Network. Pediatric Radiology. 2023;53:S58. 

Open source AI 

Nguyen NH, Nguyen HQ, Nguyen NT, Nguyen TV, Pham HH, Nguyen TNM. Deployment and validation of an AI system for 
detecting abnormal chest radiographs in clinical settings. Frontiers in Digital Health. 2022;4:890759. 

Wrong AI 

Nishiyama M, Ishibashi K, Ariji Y, Fukuda M, Nishiyama W, Umemura M, et al. Performance of deep learning models 
constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle. Dento 
maxillo facial radiology. 2021;50(7):20200611. 

Unclear AI 

Nowroozi A, Salehi MA, Shobeiri P, Agahi S, Momtazmanesh S, Kaviani P, et al. Artificial intelligence diagnostic accuracy Wrong study design 
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Excluded study Reason for 
exclusion 

in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis. 
Clinical radiology. 2024. 

Oakden-Rayner L, Gale W, Bonham TA, Lungren MP, Carneiro G, Bradley AP, et al. Validation and algorithmic audit of a 
deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a 
diagnostic accuracy study. The Lancet Digital health. 2022;4(5):e351-e8. 

Unclear AI 

Oka K, Shiode R, Yoshii Y, Tanaka H, Iwahashi T, Murase T. Artificial intelligence to diagnosis distal radius fracture using 
biplane plain X-rays. Journal of orthopaedic surgery and research. 2021;16(1):694. 

Unclear AI 

Olczak J, Emilson F, Razavian A, Antonsson T, Stark A, Gordon M. Ankle fracture classification using deep learning: 
automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification 
reaches a high degree of correct classification. Acta orthopaedica. 2021;92(1):102-8. 

Wrong AI 

Ozkaya E, Topal FE, Bulut T, Gursoy M, Ozuysal M, Karakaya Z. Evaluation of an artificial intelligence system for 
diagnosing scaphoid fracture on direct radiography. European journal of trauma and emergency surgery : official 
publication of the European Trauma Society. 2022;48(1):585-92. 

Unclear AI 

Park JY, Lee SH, Kim YJ, Lee GJ, Kim KG. Machine learning model based on radiomics features for AO/OTA classification of 
pelvic fractures on pelvic radiographs. PLoS ONE. 2024;19(5):e0304350. 

Open source AI 

Parpaleix A, Parsy C, Codari M, Mejdoubi M. Added value of artificial intelligence in traumatic radiographic findings 
detection in emergency settings. Insights into Imaging. 2022;14(Supplement 4):202. 

Unclear if standalone 
AI 

Pauling C, Thomas K, Evans E, Laidlow-Singh H, Garbera D, Fernando R, et al. ACCURACY OF ARTIFICIAL INTELLIGENCE 
FOR FRACTURE DETECTION IN OSTEOGENESIS IMPERFECTA. BMJ Paediatrics Open. 2023;7:A12-A3. 

Unclear AI 

Pourchot A, Bailly K, Ducarouge A, Sigaud O, Ieee, Elect Engineers IE, et al. NEURAL ARCHITECTURE SEARCH FOR 
FRACTURE CLASSIFICATION. Bordeaux, FRANCE2022 2022-10-16. 3226-30 p. 

Wrong outcome 

Pouvreau M, Delmas J, Chateil JF. EVALUATION OF ARTIFICIAL INTELLIGENCE IN FRACTURE DETECTION IN CHILDREN: 
PRELIMINARY RESULTS. Pediatric Radiology. 2022;52:S156. 

Standalone AI 

Radiobotics. S4 confidential company submission. Wrong intervention 

Radiobotics. S5 confidential company submission. Wrong outcome 

Radiobotics. S6 confidential company submission. Wrong intervention 

Radiobotics. S10 confidential company submission. Standalone AI 

Radiobotics. S12 confidential company submission. Abstract only 

Rashid T, Zia MS, Najam Ur R, Meraj T, Rauf HT, Kadry S. A Minority Class Balanced Approach Using the DCNN-LSTM 
Method to Detect Human Wrist Fracture. Life (Basel, Switzerland). 2023;13(1). 

Unclear AI 

Rayan JC, Reddy N, Herman Kan J, Zhang W, Annapragada A. Binomial classification of pediatric elbow fractures using a 
deep learning multiview approach emulating radiologist decision making. Radiology: Artificial Intelligence. 

Unclear AI 
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Excluded study Reason for 
exclusion 

2019;1(1):e180015. 

Rayscape. Rayscape Medical Whitepaper2022 2022. Wrong AI 

Reichert G, Bellamine A, Fontaine M, Naipeanu B, Altar A, Mejean E, et al. How Can a Deep Learning Algorithm Improve 
Fracture Detection on X-rays in the Emergency Room? Journal of Imaging [Internet]. 2021; 7(7). 

Unclear if standalone 
AI 

Regnard NE, Lanseur B, Lassalle L, Lambert A, Dallaudiere B, Feydy A. Performances of a deep learning algorithm for the 
detection of fracture, dislocation, elbow joint effusion, focal bone lesions on trauma x-rays. Insights into Imaging. 
2022;14:227. 

Standalone AI 

Regnard NE, Lanseur B, Ventre J, Ducarouge A, Clovis L, Lassalle L, et al. Assessment of performances of a deep learning 
algorithm for the detection of limbs and pelvic fractures, dislocations, focal bone lesions, and elbow effusions on trauma 
X-rays. European Journal of Radiology. 2022;154:110447. 

Standalone AI 

Rezaei Z, Eslami B, Komleh HE, Jahromi KD. Abnormality detection in musculoskeletal radiographs by densenet and 
inception-v3. Iranian Journal of Radiology. 2019;16:S14-S5. 

Unclear AI 

Rosa F, Buccicardi D, Romano A, Borda F, D'Auria MC, Gastaldo A. Artificial intelligence and pelvic fracture diagnosis on X-
rays: a preliminary study on performance, workflow integration and radiologists' feedback assessment in a spoke 
emergency hospital. European journal of radiology open. 2023;11:100504. 

Standalone AI 

Rosenberg GS, Cina A, Schiro GR, Giorgi PD, Gueorguiev B, Alini M, et al. Artificial Intelligence Accurately Detects 
Traumatic Thoracolumbar Fractures on Sagittal Radiographs. Swiss Medical Weekly. 2023;153:16S. 

Unclear AI 

Ruitenbeek H, Egnell L, Ziegeler K, Brejnebol MW, Nybing JU, Lensskjold A, et al. Protocol for the AutoRayValid-
RBfracture Study: Evaluating the efficacy of an AI fracture detection system. medRxiv. 2023. 

Wrong publication 
type 

Russe MF, Rebmann P, Tran PH, Kellner E, Reisert M, Bamberg F, et al. AI-based X-ray fracture analysis of the distal 
radius: accuracy between representative classification, detection and segmentation deep learning models for clinical 
practice. BMJ open. 2024;14(1):e076954. 

Standalone AI 

Rutledge M, Yap M, Chai K. Plain film mandibular fracture detection using machine learning - Model development. 
Advances in Oral and Maxillofacial Surgery. 2023;11:100436. 

Wrong AI 

Sanchez M, Alford K, Krishna V, Huynh TM, Nguyen CDT, Lungren MP, et al. AI-clinician collaboration via disagreement 
prediction: A decision pipeline and retrospective analysis of real-world radiologist-AI interactions. Cell Reports Medicine. 
2023;4(10):101207. 

Wrong AI 

Sato Y, Takegami Y, Asamoto T, Ono Y, Hidetoshi T, Goto R, et al. Artificial intelligence improves the accuracy of residents 
in the diagnosis of hip fractures: a multicenter study. BMC musculoskeletal disorders. 2021;22(1):407. 

Unclear AI 

Seah JCY, Tang CHM, Buchlak QD, Holt XG, Wardman JB, Aimoldin A, et al. Effect of a comprehensive deep-learning 
model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study. Lancet 
Digit Health. 2021;3(8):e496-e506. 

Wrong AI 



Artificial intelligence software to help detect fractures on X-rays in urgent care: An Early Value Assessment  

Page 155 of 159 

Excluded study Reason for 
exclusion 

Shahnavazi M, Mohamadrahimi H. The application of artificial neural networks in the detection of mandibular fractures 
using panoramic radiography. Dental Research Journal. 2023;20(1):27. 

Unclear AI 

Shaik A, Larsen K, Lane NE, Zhao C, Su K-J, Keyak JH, et al. A Staged Approach using Machine Learning and Uncertainty 
Quantification to Predict the Risk of Hip Fracture. ArXiv. 2024. 

Wrong AI, wrong 
population 

Shen L, Gao C, Hu S, Kang D, Zhang Z, Xia D, et al. Using Artificial Intelligence to Diagnose Osteoporotic Vertebral 
Fractures on Plain Radiographs. Journal of bone and mineral research : the official journal of the American Society for 
Bone and Mineral Research. 2023;38(9):1278-87. 

Wrong AI 

Shim JH, Kim WS, Kim KG, Yee GT, Kim YJ, Jeong TS. Automated Segmentation and Diagnostic Measurement for the 
Evaluation of Cervical Spine Injuries Using X-Rays. Journal of imaging informatics in medicine. 2024. 

Open source AI 

SIGN, Scotland HI. Management of osteoporosis and the prevention of fragility fractures2021 2021. Wrong publication 
type 

Silberstein J, Sun Z. A Novel AI Tool for Automated Detection Of Osteoporotic Vertebral Fractures On Routine Chest 
Radiographs. Australasian Medical Journal. 2023;16(3):550-2. 

Wrong AI 

Silberstein J, Wee C, Gupta A, Seymour H, Ghotra SS, Sa Dos Reis C, et al. Artificial Intelligence-Assisted Detection of 
Osteoporotic Vertebral Fractures on Lateral Chest Radiographs in Post-Menopausal Women. Journal of clinical medicine. 
2023;12(24). 

Wrong AI 

Singh D, Nagaraj S, Mashouri P, Drysdale E, Fischer J, Goldenberg A, et al. Assessment of Machine Learning-Based 
Medical Directives to Expedite Care in Pediatric Emergency Medicine. JAMA Network Open. 2022;5(3):e222599. 

Wrong AI 

Soong C, Lin FH, Yang RS, Yang TH, Chen HY. APPLICATION OF DEEP LEARNING ALGORITHM TO DETECT AND VISUALIZE 
VERTEBRAL FRACTURES ON PLAIN FRONTAL RADIOGRAPHS. Aging Clinical and Experimental Research. 2023;35:S137-S8. 

Unclear AI 

Stanborough RO, Garner HW. Beyond the AJR: Validation and Algorithmic Audit of a Deep Learning System to Detect Hip 
Fractures Radiographically. AJR American journal of roentgenology. 2023;220(1):150. 

Wrong publication 
type 

Sun H, Wang X, Li Z, Liu A, Xu S, Jiang Q, et al. Automated Rib Fracture Detection on Chest X-Ray Using Contrastive 
Learning. Journal of digital imaging. 2023;36(5):2138-47. 

Unclear AI 

Tan H, Xu H, Yu N, Yu Y, Duan H, Fan Q, et al. The value of deep learning-based computer aided diagnostic system in 
improving diagnostic performance of rib fractures in acute blunt trauma. BMC medical imaging. 2023;23(1):55. 

Wrong population 

Tanamala S CS, Maniparambil M, Rao P, Biviji M. Clinical Context Improves the Performance of AI models for Cranial 
Fracture Detection2019 2019. 

Wrong population 

Tobler P, Cyriac J, Kovacs BK, Hofmann V, Sexauer R, Paciolla F, et al. AI-based detection and classification of distal radius 
fractures using low-effort data labeling: evaluation of applicability and effect of training set size. European radiology. 
2021;31(9):6816-24. 

Unclear AI 

Tu E, Burkow J, Tsai A, Junewick J, Perez FA, Otjen J, et al. Near-pair patch generative adversarial network for data Unclear AI 
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Excluded study Reason for 
exclusion 

augmentation of focal pathology object detection models. Journal of medical imaging (Bellingham, Wash). 
2024;11(3):034505. 

Twinprai N, Boonrod A, Boonrod A, Chindaprasirt J, Sirithanaphol W, Chindaprasirt P, et al. Artificial intelligence (AI) vs. 
human in hip fracture detection. Heliyon. 2022;8(11):e11266. 

Wrong AI 

Ureten K, Sevinc HF, Igdeli U, Onay A, Maras Y. Use of deep learning methods for hand fracture detection from plain 
hand radiographs. Duz el radyografilerinden el kiriklarinin tespiti icin derin ogrenme yontemlerinin kullanilmasi. 
2022;28(2):196-201. 

Wrong AI 

van Leeuwen KG, Schalekamp S, Rutten M, van Ginneken B, de Rooij M. Artificial intelligence in radiology: 100 
commercially available products and their scientific evidence. Eur Radiol. 2021;31(6):3797-804. 

Wrong study design 

Ventre J, Regnard NE, Lanseur B, Lassalle L, Lambert A, Dallaudiere B, et al. Performances of a deep learning algorithm 
for the detection of fractures, dislocations, elbow joint effusions, focal bone lesions on trauma X-rays. Insights into 
Imaging. 2022;13:9. 

Standalone AI 

Wadhawan A, Min H. Fracture classification using deep learning algorithms. Journal of Medical Imaging and Radiation 
Oncology. 2022;66:11. 

Wrong AI 

Wang Y, Li Y, Lin G, Zhang Q, Zhong J, Zhang Y, et al. Lower-extremity fatigue fracture detection and grading based on 
deep learning models of radiographs. European radiology. 2023;33(1):555-65. 

Unclear AI 

Warin K, Limprasert W, Suebnukarn S, Inglam S, Jantana P, Vicharueang S. Assessment of deep convolutional neural 
network models for mandibular fracture detection in panoramic radiographs. International journal of oral and 
maxillofacial surgery. 2022;51(11):1488-94. 

Unclear AI 

Wee C, Sun Z. AI-assisted automated detection: The future tool of detecting missed osteoporotic vertebral fractures on 
chest radiographs. Journal of Medical Radiation Sciences. 2023;70:53. 

Wrong AI 

Wei D, Wu Q, Wang X, Tian M, Li B. Accurate Instance Segmentation in Pediatric Elbow Radiographs. Sensors (Basel, 
Switzerland). 2021;21(23). 

Wrong AI 

Xiao BH, Zhu MSY, Du EZ, Liu WH, Ma JB, Huang H, et al. A software program for automated compressive vertebral 
fracture detection on elderly women's lateral chest radiograph: Ofeye 1.0. Quantitative Imaging in Medicine and Surgery. 
2022;12(8):4259-71. 

Wrong AI 

Xie Y, Li X, Chen F, Wen R, Jing Y, Liu C, et al. Artificial intelligence diagnostic model for multi-site fracture X-ray images of 
extremities based on deep convolutional neural networks. Quantitative imaging in medicine and surgery. 
2024;14(2):1930-43. 

Unclear AI 

Xu F, Xiong Y, Ye G, Liang Y, Guo W, Deng Q, et al. Deep learning-based artificial intelligence model for classification of 
vertebral compression fractures: A multicenter diagnostic study. Frontiers in endocrinology. 2023;14:1025749. 

Open source AI 

Yang TH, Horng MH, Li RS, Sun YN. Scaphoid Fracture Detection by Using Convolutional Neural Network. Diagnostics. Wrong AI 
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Excluded study Reason for 
exclusion 

2022;12(4):895. 

Yari A, Fasih P, Hosseini Hooshiar M, Goodarzi A, Fattahi SF. Detection and classification of mandibular fractures in 
panoramic radiography using artificial intelligence. Dento maxillo facial radiology. 2024. 

Unclear AI 

Yildiz Potter I, Yeritsyan D, Mahar S, Kheir N, Putman M, Rodriguez EK, et al. Proximal femur fracture detection on plain 
radiography via feature pyramid networks. Scientific reports. 2024;14(1):12046. 

Wrong AI 

Yoon AP, Chung WT, Wang C-W, Kuo C-F, Lin C, Chung KC. Can a Deep Learning Algorithm Improve Detection of Occult 
Scaphoid Fractures in Plain Radiographs? A Clinical Validation Study. Clinical orthopaedics and related research. 
2023;481(9):1828-35. 

Unclear AI 

Yoon AP, Lee Y-L, Kane RL, Kuo C-F, Lin C, Chung KC. Development and Validation of a Deep Learning Model Using 
Convolutional Neural Networks to Identify Scaphoid Fractures in Radiographs. JAMA network open. 2021;4(5):e216096. 

Unclear AI 

Yu AC, Mohajer B, Eng J. External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review. 
Radiol Artif Intell. 2022;4(3):e210064. 

Wrong study design 

Yu JS, Yu SM, Erdal BS, Demirer M, Gupta V, Bigelow M, et al. Detection and localisation of hip fractures on 
anteroposterior radiographs with artificial intelligence: proof of concept. Clinical radiology. 2020;75(3):237.e1-.e9. 

Unclear AI 

Zech JR, Carotenuto G, Igbinoba Z, Tran CV, Insley E, Baccarella A, et al. Detecting pediatric wrist fractures using deep-
learning-based object detection. Pediatric radiology. 2023;53(6):1125-34. 

Unclear AI 

Zech JR, Ezuma CO, Patel S, Edwards CR, Posner R, Hannon E, et al. Artificial intelligence improves resident detection of 
pediatric and young adult upper extremity fractures. Skeletal Radiology. 2024. 

Wrong AI 

Zech JR, Jaramillo D, Altosaar J, Popkin CA, Wong TT. Artificial intelligence to identify fractures on pediatric and young 
adult upper extremity radiographs. Pediatric radiology. 2023;53(12):2386-97. 

Wrong AI 

Zhang H, Xu R, Guo X, Zhou D, Xu T, Zhong X, et al. Deep learning-based automated high-accuracy location and 
identification of fresh vertebral compression fractures from spinal radiographs: a multicenter cohort study. Frontiers in 
bioengineering and biotechnology. 2024;12:1397003. 

Unclear AI 

Zhang J, Xia L, Liu J, Niu X, Tang J, Xia J, et al. Exploring deep learning radiomics for classifying osteoporotic vertebral 
fractures in X-ray images. Frontiers in endocrinology. 2024;15:1370838. 

Unclear AI 
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Appendix D – Additional Scenario Analyses 

This appendix contains additional analysis requested by NICE and specialist committee 

members to provide further information prior to the appraisal committee meeting. 

Some companies stated that their software was associated with setup costs.  Feedback from an 

SCM suggested that there are also costs incurred within the NHS to support set up of a new 

technology, specifically NHS IT time and fees from PACS providers to ensure the new 

technology works correctly and does not cause any issues with the existing radiology workflow.  

These may be up to £50,000 per site.  The EAG therefore presented an analysis adding a 

notional one-off set up fee of £50,000, and conducted a threshold analysis stating the maximum 

set-up fee for AI detection to be cost-effective.  This is equivalent to the incremental net 

monetary benefit at a site (rather than individual patient) level. 

Similarly, the EAG assumed a notional five-year life for the software.  That is, the fixed costs 

were apportioned on a per-scan basis over five years.  The EAG conducted a scenario here 

assuming they are apportioned over two years. 

Method 

Aggregate figures reported in Table 46 correspond to one year’s use of the algorithms.  These 

are multiplied by five to approximate a five year lifespan of the software.  The INHB and INMB 

are calculated including a £50,000 one-off set up cost. 

Results 

The results are broadly insensitive to a £50,000 setup cost: most of the interventions are 

associated with a cost saving in excess of this when considered over a 5 year lifetime of the 

algorithm (Table 51).  The EAG noted that even over a one year lifespan of the algorithm, a 

£50,000 will still not offset the savings associated use of most of the algorithms.  The maximum 

cost of installation for the algorithms to still represent value for money is equal to £50,000 plus 

the INMB at the chosen threshold.  For example, the maximum cost for installation, assuming a 

threshold of £20,000 / QALY for BoneView is £4.240m (£4.190m + £50k).  The EAG noted that 

this is likely far above a plausible estimate of the cost for this. 
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Table 51: Population level results: scenario analysis  

interventions Setup 
cost 

Cost vs  
unassisted  
(£000s) 

Total (£000s) QALYs vs 
Unassist
ed 

INHB20k INHB30k INMB20K 
(£000s) 

INMB30K 
(£000k) 

BoneView 50,000 -4,107K -4,057K 6.670 209.51 141.89 4,190K 4,257K 

Rayvolve 50,000 19,796K 19,846K 6.670 -985.65 -654.88 -19,713K -19,646K 

RBfracture 50,000 XXXXX XXXXX 0 XXXXX XXXXX XXXXX XXXXX 

TechCare Alert 50,000 XXXXX XXXXX 6.670 XXXXX XXXXX XXXXX XXXXX 

Unassisted  0  0 0 0 0 0 

Abbreviations: INHB20k/INHB30k, incremental health benefit at willingness to pay threshold of £20/30k; 
INMB20k/INMB£30k incremental net monetary benefit at each threshold; QALY, Quality Adjusted Life Year 
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External Assessment Report - Comments  
 

Stakeholder Comment 
no. 

Page 
no. 

Section 
no. 

Comment EAG Response 

Gleamer 1 113 8.3.10. The scenario analysis presented in Table 37 is not 
reproducible due to volume of literature and 
differing datasets, leading to a bias towards those 
technologies that have results from only 1 study.  

The EAG selected lowest and highest plausible 
values for the optimistic and pessimistic scenarios 
from the literature available.  They represent the 
highest and lowest figures reported in Tables 11 to 
16 of the report.  The EAG agrees that this may 
bias for or against technologies that only have one 
study.  The EAG stresses in several places that 
comparisons between technologies should 
preferably be avoided.  Comment added to P117: 
“For example, the optimistic and pessimistic 
scenarios may not fully capture uncertainty and 
therefore may bias in favour or against 
technologies with only one source study.” 

Gleamer 2 113 8.3.10. Algorithm versioning is an important consideration. 
From the study, which version of the algorithm was 
used and are the performances up to date based 
on the latest version? 

The sensitivity and specificity of each algorithm 
was obtained from the relevant source studies and 
thus the version that was used in those is the 
implied version in the model.  We note on P31 that 
versioning was not reported throughout the 
evidence base, and that this is an important 
reporting consideration for future studies.  No edit 
made to report. 

Gleamer 3 113 8.3.10. Why are the unassisted optimistic and pessimistic 
scenarios reversed? 

This was to provide a most optimistic and 
pessimistic scenario for the algorithms vs 
unassisted, rather than for all diagnosis together.  
No edit made to report 
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